• Title/Summary/Keyword: (m, n)-ideal

Search Result 177, Processing Time 0.027 seconds

WEAKLY (m, n)-CLOSED IDEALS AND (m, n)-VON NEUMANN REGULAR RINGS

  • Anderson, David F.;Badawi, Ayman;Fahid, Brahim
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1031-1043
    • /
    • 2018
  • Let R be a commutative ring with $1{\neq}0$, I a proper ideal of R, and m and n positive integers. In this paper, we define I to be a weakly (m, n)-closed ideal if $0{\neq}x^m\;{\in}I$ for $x{\in}R$ implies $x^n{\in}I$, and R to be an (m, n)-von Neumann regular ring if for every $x{\in}R$, there is an $r{\in}R$ such that $x^mr=x^n$. A number of results concerning weakly(m, n)-closed ideals and (m, n)-von Neumann regular rings are given.

RINGS WITH IDEAL-SYMMETRIC IDEALS

  • Han, Juncheol;Lee, Yang;Park, Sangwon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1913-1925
    • /
    • 2017
  • Let R be a ring with identity. An ideal N of R is called ideal-symmetric (resp., ideal-reversible) if $ABC{\subseteq}N$ implies $ACB{\subseteq}N$ (resp., $AB{\subseteq}N$ implies $BA{\subseteq}N$) for any ideals A, B, C in R. A ring R is called ideal-symmetric if zero ideal of R is ideal-symmetric. Let S(R) (called the ideal-symmetric radical of R) be the intersection of all ideal-symmetric ideals of R. In this paper, the following are investigated: (1) Some equivalent conditions on an ideal-symmetric ideal of a ring are obtained; (2) Ideal-symmetric property is Morita invariant; (3) For any ring R, we have $S(M_n(R))=M_n(S(R))$ where $M_n(R)$ is the ring of all n by n matrices over R; (4) For a quasi-Baer ring R, R is semiprime if and only if R is ideal-symmetric if and only if R is ideal-reversible.

ON WEAKLY (m, n)-PRIME IDEALS OF COMMUTATIVE RINGS

  • Hani A. Khashan;Ece Yetkin Celikel
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.3
    • /
    • pp.717-734
    • /
    • 2024
  • Let R be a commutative ring with identity and m, n be positive integers. In this paper, we introduce the class of weakly (m, n)-prime ideals generalizing (m, n)-prime and weakly (m, n)-closed ideals. A proper ideal I of R is called weakly (m, n)-prime if for a, b ∈ R, 0 ≠ amb ∈ I implies either an ∈ I or b ∈ I. We justify several properties and characterizations of weakly (m, n)-prime ideals with many supporting examples. Furthermore, we investigate weakly (m, n)-prime ideals under various contexts of constructions such as direct products, localizations and homomorphic images. Finally, we discuss the behaviour of this class of ideals in idealization and amalgamated rings.

GENERALIZED IDEAL ELEMENTS IN le-Γ-SEMIGROUPS

  • Hila, Kostaq;Pisha, Edmond
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.3
    • /
    • pp.373-384
    • /
    • 2011
  • In this paper we introduce and give some characterizations of (m, n)-regular le-${\Gamma}$-semigroup in terms of (m, n)-ideal elements and (m, n)-quasi-ideal elements. Also, we give some characterizations of subidempotent (m, n)-ideal elements in terms of $r_{\alpha}$- and $l_{\alpha}$- closed elements.

MAXIMAL CHAIN OF IDEALS AND n-MAXIMAL IDEAL

  • Hemin A. Ahmad;Parween A. Hummadi
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.331-340
    • /
    • 2023
  • In this paper, the concept of a maximal chain of ideals is introduced. Some properties of such chains are studied. We introduce some other concepts related to a maximal chain of ideals such as the n-maximal ideal, the maximal dimension of a ring S (M. dim(S)), the maximal depth of an ideal K of S (M.d(K)) and maximal height of an ideal K(M.d(K)).

EXTENSIONS OF STRONGLY π-REGULAR RINGS

  • Chen, Huanyin;Kose, Handan;Kurtulmaz, Yosum
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.555-565
    • /
    • 2014
  • An ideal I of a ring R is strongly ${\pi}$-regular if for any $x{\in}I$ there exist $n{\in}\mathbb{N}$ and $y{\in}I$ such that $x^n=x^{n+1}y$. We prove that every strongly ${\pi}$-regular ideal of a ring is a B-ideal. An ideal I is periodic provided that for any $x{\in}I$ there exist two distinct m, $n{\in}\mathbb{N}$ such that $x^m=x^n$. Furthermore, we prove that an ideal I of a ring R is periodic if and only if I is strongly ${\pi}$-regular and for any $u{\in}U(I)$, $u^{-1}{\in}\mathbb{Z}[u]$.

On Partitioning Ideals of Semirings

  • Gupta, Vishnu;Chaudhari, Jayprakash Ninu
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.2
    • /
    • pp.181-184
    • /
    • 2006
  • We prove the following results: (1) Let R be a strongly euclidean semiring. Then an ideal A of $R_{n{\times}n}$ is a partitioning ideal if and only if it is a subtractive ideal. (2) A monic ideal M of R[$x$], where R is a strongly euclidean semiring, is a partitioning ideal if and only if it is a subtractive ideal.

  • PDF

FINITENESS PROPERTIES GENERALIZED LOCAL COHOMOLOGY WITH RESPECT TO AN IDEAL CONTAINING THE IRRELEVANT IDEAL

  • Dehghani-Zadeh, Fatemeh
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.6
    • /
    • pp.1215-1227
    • /
    • 2012
  • The membership of the generalized local cohomology modules $H_a^i$(M,N) of two R-modules M and N with respect to an ideal a in certain Serre subcategories of the category of modules is studied from below ($i<t$). Furthermore, the behaviour of the $n$th graded component $H_a^i(M,N)_n$ of the generalized local cohomology modules with respect to an ideal containing the irrelevant ideal as $n{\rightarrow}-{\infty}$ is investigated by using the above result, in certain graded situations.