
Commun. Korean Math. Soc. 38 (2023), No. 2, pp. 331–340

https://doi.org/10.4134/CKMS.c220097

pISSN: 1225-1763 / eISSN: 2234-3024

MAXIMAL CHAIN OF IDEALS AND n-MAXIMAL IDEAL

Hemin A. Ahmad and Parween A. Hummadi

Abstract. In this paper, the concept of a maximal chain of ideals is

introduced. Some properties of such chains are studied. We introduce

some other concepts related to a maximal chain of ideals such as the
n-maximal ideal, the maximal dimension of a ring S (M.dim(S)), the

maximal depth of an ideal K of S (M.d(K)) and maximal height of an
ideal K(M.d(K)).

1. Introduction

In this paper, S is a commutative ring with identity. A chain of ideals
K0 ⊂ K1 ⊂ K2 ⊂ · · · of S is called a chain of prime ideals, if Ki is a prime
ideal of S [6]. Such a chain of ideals is called maximal if there is no further
a prime ideal can be inserted between Ki−1 and Ki for each i ∈ Z+ [3]. A
chain of proper ideals K0 ⊂ K1 ⊂ K2 ⊂ · · · of S is called a prime (resp. p-
maximal) ascending chain of ideals ifKi−1 is a prime (resp. prime and maximal)
ideal in Ki for each i ∈ Z+[1]. The length of a finite chain of prime ideals
K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kh−1 ⊂ Kh of S is h. The maximum length of a
chain of prime ideals is called the dimension of S and the depth (resp. height)
of an ideal K of S is the maximum length over all chains of prime ideals in S
with an initial (resp. a terminal) ideal K [3, 6]. These ideas motivated us to
introduce and study some new concepts. Let J ⊂ K be two proper ideals of
S. The ideal J is said to be maximal in K, if there is no ideal I of S such that
J ⊂ I ⊂ K. A chain of proper ideals K0 ⊂ K1 ⊂ K2 ⊂ · · · of S is called the
maximal chain of ideals of S if Kt−1 is a maximal ideal in Kt for each t ∈ Z+.
If K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kh is a finite chain, then K0 is said to be the initial
ideal and Kh is the terminal ideal of the chain. A nonmaximal proper ideal K0

of S is called a maximal ideal of length m with respect to the maximal chain
of ideals K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Km, if Km is a maximal ideal of S.

A ring S has the property FMC, if for every two proper ideals J ⊂ K of
S, there is a finite maximal chain of ideals of S with an initial ideal J and
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a terminal ideal K. This property gives a clue to give a characterization of
Artinian rings. In Section 3, the concept of an n-maximal ideal is introduced
via a maximal chain of ideals. Some results on such ideals are obtained. The
relations between an n-maximal ideal with some other types of ideals, such
as a prime ideal, a weakly prime ideal, a primary ideal, a quasi prime ideal,
an almost prime ideal, an irreducible ideal and a strongly irreducible ideal are
discussed. In Section 4, the concepts of the maximal dimension M.dim(S) of
a ring S, the maximal depth M.d(K) and the maximal height M.h(K) of an
ideal K of S are introduced.

2. Maximal chain of ideals

In this section, the concepts of a maximal chain of ideals of a ring and the
property FMC of a ring are introduced and studied. We obtain some results
and properties of a maximal chain of ideals of a ring having the property FMC.

Definition 2.1. A chain of proper ideals K0 ⊂ K1 ⊂ K2 ⊂ · · · of a ring S
is called the maximal chain of ideals of S if Kt−1 is a maximal ideal in Kt for
each t ∈ Z+. If K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kh is a finite chain, then K0 is said to
be the initial ideal and Kh is the terminal ideal of the chain. A nonmaximal
proper ideal K0 of S is called a maximal ideal of length m with respect to the
maximal chain of ideals K0 ⊂ K1 ⊂ K2 ⊂ · · · , if there exists m ∈ Z+ such
that Km is a maximal ideal of S. The length of K0 is said to be ∞, if there is
no such the finite maximal chain of ideals with initial ideal K0. Moreover, the
length of a maximal ideal is defined to be 0. Also the chain J0 ⊃ J1 ⊃ J2 ⊃ · · ·
is said to be a maximal chain of ideals of S, if Jh is a maximal ideal in Jh−1

for each h ∈ Z+.

Examples 2.2. 1. Consider the ring S = Zpn , where p is a prime number
and n > 1. Let Ki = ⟨pn−i⟩, where 0 ≤ i < n. The chain K0 ⊂ K1 ⊂ K2 ⊂
· · · ⊂ Kn−1 is a finite maximal chain of ideals with an initial ideal K0 = ⟨0⟩
and a terminal ideal Kn−1 = ⟨p⟩ which is the maximal ideal of S and for each
0 ≤ i < n, Ki is a maximal ideal of length (n − 1) − i with respect to the
maximal chain of ideals Ki ⊂ · · · ⊂ Kn−1.

2. Let S =
∏∞

1 Z2 be the ring of direct product of an infinite countable
copies of Z2. For each i ∈ Z+ ∪ {0}, consider the ideal

Ki = Z2 × Z2 × · · · × Z2︸ ︷︷ ︸
i-times

×{0} × {0} × · · · .

Then for each 0 ≤ i, Ki is a maximal ideal in Ki+1. So that Ki ⊂ Ki+1 ⊂
Ki+2 ⊂ · · · is an infinite maximal chain of ideals of S with an initial ideal
Ki. Therefore, for each 0 ≤ i, Ki is a maximal ideal of length ∞ with respect
to the maximal chain of ideals Ki ⊂ Ki+1 ⊂ Ki+2 ⊂ · · · . Moreover for each
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i ∈ Z+ ∪ {0}, consider the ideal

Ji = {0} × {0} × · · · × {0}︸ ︷︷ ︸
(i+1)-times

×Z2 × Z2 × · · · .

Then for each 0 ≤ i, Ji+1 is a maximal ideal in Ji. So that J0 ⊃ J1 ⊃ J2 ⊃ · · ·
is an infinite maximal chain of ideals of S with a terminal ideal J0 which is a
maximal ideal of S. This means that for each 1 ≤ i, Ji is a maximal ideal of
length i with respect to the maximal chain of ideals J0 ⊃ J1 ⊃ J2 ⊃ · · · ⊃ Ji .

3. The zero ideal of Z is neither a maximal ideal of Z nor maximal in any
other ideal of Z. This means that there is no a finite maximal chain of ideals
with initial ideal ⟨0⟩ and a terminal ideal which is a maximal ideal of Z. So
that ⟨0⟩ is a maximal ideal of length ∞.

Definition 2.3 ([5]). A proper ideal I of a ring S is called strongly irreducible
if for any two ideals A and B of S, A ∩B ⊆ I implies A ⊆ I or B ⊆ I.

Remark 2.4. Consider the ideal K of a ring S. Then
1. If K is a maximal ideal in more than one ideal of S, then K is not

a strongly irreducible ideal consequently not prime, since if K is a maximal
ideal in two ideals J and I of S, then clearly K ⊆ J ∩ I ⊂ I. Since K is a
maximal ideal in I, then K = J ∩ I. Hence K is not a strongly irreducible,
since J, I ̸⊆ K.

2. If K is maximal in exactly one ideal, then K need not be a strongly
irreducible (resp. not prime) ideal. For example, consider the ideals K0 = ⟨0⟩,
K1 = ⟨2⟩ = {0, 2}, K2 = ⟨x⟩ = {0, x}, K3 = ⟨2 + x⟩ = {0, 2 + x} and
K4 = ⟨2, x⟩ = {0, 2, x, 2 + x} of the ring S = Z4[x]/⟨2x, x2⟩ = {0, 1, 2, 3, x, 1 +
x, 2 + x, 3 + x} such that x2 = 2x = 0. Clearly each of K1, K2 and K3

are maximal in exactly one ideal of S that is K4 but they are not strongly
irreducible.

Directly from Remark 2.4 we get the following result.

Corollary 2.5. A strongly irreducible ideal of a ring S is maximal in at most
one ideal of S.

Theorem 2.6. Let S be an integral domain. The zero ideal of S can not be
maximal in any other proper ideal of S.

Proof. Suppose ⟨0⟩ is a maximal ideal in a proper ideal K of S. Clearly K is a
principal ideal sayK = ⟨a⟩ where a is non zero non unit. Then ⟨0⟩ ⊆ ⟨a2⟩ ⊆ ⟨a⟩.
Being the zero ideal maximal in K, then ⟨0⟩ = ⟨a2⟩ or ⟨a2⟩ = ⟨a⟩. If ⟨0⟩ = ⟨a2⟩,
then a2 = 0 which is a contradiction with S is an integral domain. If ⟨a2⟩ = ⟨a⟩,
then ta2 = a for some t ∈ S \ {0}. So that a(ta− 1) = 0. If ta− 1 = 0, then a
is a unit, contradiction, which completes the proof. □

Definition 2.7. A ring S has the property FMC, if for every two proper ideals
J ⊂ K of S, there is a finite maximal chain of ideals of S with an initial ideal
J and a terminal ideal K.
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From Definition 2.7 we get the following result.

Remark 2.8. If a ring S has the property FMC, then every nonmaximal ideal
of S is maximal in another ideal of S.

The following two theorems are needed.

Theorem 2.9 ([2]). A commutative ring with identity is Noetherian if and
only if each of its ideals is finitely generated.

Theorem 2.10 ([4]). For a commutative ring S with identity the following are
equivalent:

(1) S is Artinian.
(2) S is Noetherian and has Krull dimension 0.
(3) Every nonempty family of ideals of S contains a minimal element under

inclusion.

Theorem 2.11. Let S be a ring which is not a field having the property FMC.
Then

(1) S is not an integral domain, equivalently the zero ideal is not prime.
(2) If H is a nonmaximal proper ideal of S, then the quotient ring S/H

has the property FMC.
(3) Every prime ideal of S is a maximal ideal. Equivalently dim(S) = 0.
(4) S is a Noetherian ring.
(5) Every chain of ideals J0 ⊂ J1 ⊂ J2 ⊂ · · · ⊂ Jn of S with an initial

ideal J0 and a terminal ideal Jn is a subsequence of a finite maximal
chain of ideals of S with an initial ideal J0 and a terminal ideal Jn.

Proof. (1) From the assumption, the zero ideal is maximal in a nonzero proper
ideal of S. By Theorem 2.6, S is not an integral domain, equivalently the zero
ideal is not prime.

(2) Let H be a nonmaximal proper ideal of S. Suppose J̄ ⊂ K̄ are two
ideals of S/H. Thus there are two ideals J,K of S such that J̄ = J + H
and K̄ = K + H. By the property FMC of S, there is a maximal chain
J ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Km ⊂ K with an initial ideal J and a terminal ideal
K. This implies that there is a chain K̄0 = J̄ ⊂ K̄1 ⊂ K̄2 ⊂ · · · ⊂ K̄m ⊂
K̄ = K̄m+1, where K̄i = Ki + H for each 1 ≤ i ≤ m+ 1. If K̄i ̸= K̄i+1

and K̄i is not maximal in K̄i+1, then there is an ideal L̄ of S/H such that
K̄i ⊂ L̄ ⊂ K̄i+1. This implies that there is an ideal L of S such that L̄ = L+H
and Ki ⊂ L ⊂ Ki+1 which is a contradiction. This means if K̄i ̸= K̄i+1, then
K̄i is maximal in K̄i+1. By removing the equal ideals in the chain K0 = J̄ ⊆
K̄1 ⊆ K̄2 ⊆ · · · ⊆ K̄m ⊆ K̄ = K̄m+1 it remains a finite maximal chain of ideals
J̄ ⊂ J̄0 ⊂ J̄1 ⊂ · · · ⊂ J̄n ⊂ J̄n+1 = K̄ of S/H with an initial ideal J̄ and a
terminal ideal J̄ , where K̄i = J̄j for some 1 ≤ i ≤ m+ 1, which completes the
proof.

(3) Consider the prime ideal Q of S. Clearly S/Q is an integral domain. By
(2), S/Q has the property FMC. If we suppose that S/Q is not a field, then
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by part (1), S/Q is not an integral domain, so we get a contradiction. Hence
S/Q is a field. Consequently Q is a maximal ideal.

(4) Let H ̸= ⟨0⟩ be an ideal of S. Then there is a finite maximal chain of
ideals ⟨0⟩ = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Km ⊂ H = Km+1 of S with an initial ideal
⟨0⟩ and a terminal ideal H. Clearly for each 0 < i ≤ m + 1, Ki is generated
by an element ai ∈ Ki −Ki−1 and Ki−1 that is Ki = ⟨Ki−1, ai⟩. So that H is
finitely generated and H = ⟨a1, a2, . . . , am⟩. Therefore, by Theorem 2.9, S is
Noetherian.

(5) Let J0 ⊂ J1 ⊂ J2 ⊂ · · · ⊂ Jn be a chain of ideals of S with an initial ideal
J0 and a terminal ideal Jn. If Ji is not maximal in Ji+1, then by assumption
there is a finite maximal chain of ideals of S with an initial ideal Ji and a
terminal ideal Ji+1 of the form Ji ⊂ Ji1 ⊂ Ji2 ⊂ · · · ⊂ Jimi

⊂ Ji+1. Then
clearly the chain J0 ⊂ J1 ⊂ J2 ⊂ · · · ⊂ Jn with an initial ideal J0 and a
terminal ideal Jn is a subsequence of a finite maximal chain of ideals of S with
an initial ideal J0 and a terminal ideal Jn of the form J0 ⊂ J01 ⊂ J02 ⊂ · · · ⊂
J0m0

⊂ J1 ⊂ · · · ⊂ Jn−1 ⊂ J(n−1)1 ⊂ J(n−1)2 ⊂ · · · ⊂ J(n−1)mn−1
⊂ Jn. □

Now, we give a characterization of an Artinian ring.

Theorem 2.12. Let S be a ring. Then S is an Artinian ring if and only if S
has property FMC.

Proof. Suppose S is an Artinian ring and let J ⊂ K be two proper ideals of S.
Let T1 = {H : H is an ideal of S and J ⊂ H ⊆ K}. Clearly T1 ̸= ϕ. Since S
is an Artinian ring, by Theorem 2.10, T1 has a minimal ideal say I1. So that
J is a maximal ideal in I1. If I1 = K, then J ⊂ K is a finite maximal chain
of ideals of S with an initial ideal J and a terminal ideal K. If I1 ̸= K, then
T2 = {H : H is an ideal of S and I1 ⊂ H ⊆ K} is a non empty family of ideals.
Since S is Artinian, then T2 has a minimal ideal say I2. So that I1 is a maximal
ideal in I2. If I2 = K, then J ⊂ Ii ⊂ K is a finite maximal chain of ideals of
S with an initial ideal J and a terminal ideal K. Proceeding in this way, we
obtain a maximal chain of ideals J ⊂ I1 ⊂ I2 ⊂ · · · of S. By Theorem 2.10,
the ring S is Noetherian. Then there exists t ∈ Z+ such that It = It+1 = · · · .
Clearly It ⊆ K. If It ⊂ K, we get a contradiction. This means It = K. So that
we obtain the finite maximal chain of ideal J ⊂ I1 ⊂ I2 ⊂ · · · ⊂ It ⊂ K with
an initial ideal J and a terminal ideal K. This means that S has the property
FMC. The converse, follows from (3) and (4) of Theorem 2.11. □

From Remark 2.8 and Theorem 2.12, we get the following result.

Corollary 2.13. If a ring S has a nonmaximal proper ideal which is not max-
imal in any other ideal of S, then S is not an Artinian ring.
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3. n-maximal ideals

In this section, we introduce the concept of an n-maximal ideal of a com-
mutative ring with identity and we illustrate it by some examples. We obtain
some results and properties of such ideals.

Definition 3.1. Let I0 be a nonmaximal proper ideal of a ring S which has
a finite length with respect to a maximal chain of ideals with an initial ideal
I0 and let n = min{t : t is the length of I0 with respect to a maximal chain of
ideals of the form I0 ⊂ I1 ⊂ I2 ⊂ · · · }. Then I0 is called an n-maximal ideal
and a maximal ideal of S is said to be a 0-maximal ideal of S.

Example 3.2. Let K = ⟨pα1
1 pα2

2 · · · pαm
m ⟩ be a nonmaximal ideal of Z, where

pi’s are distinct primes and m ≥ 1, and αi ∈ Z+ for 1 ≤ i ≤ m with at
least one of αi, m is greater than one. Then K is an n-maximal ideal, where
n = (

∑m
1 αi)− 1. Furthermore, the zero ideal is not an n-maximal ideal of Z.

Remark 3.3. Let S be a ring. Then
1. If I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ Im is a maximal chain of ideals of S and Im is a

maximal ideal of S, then for each 0 ≤ i < m, the ideal Ii is an n-maximal ideal
for some n ∈ Z+.

2. If K is a nonmaximal proper ideal of S which is not maximal in any other
ideal of S, then K is not an n-maximal ideal of S.

Proof. 1. Let I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ Im be a maximal chain of ideals of S and
Im is a maximal ideal of S. Clearly for each 0 ≤ i < m, the length of Ii is m− i
with respect to the maximal chain of ideals I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ Im. The set
Ai = {t : t is the length of Ii with respect to a maximal chain of ideals of the
form Ii ⊂ I1+i ⊂ Ii+2 ⊂ · · · ⊂ Im} is a nonempty subset of Z+. Therefore, Ii
is an n-maximal ideal, where n is the least element of Ai.

2. It is clear. □

Example 3.4. Consider the ring S = Z2[x1, x2, . . .], where xi are indetermi-
nates. Then for each t ∈ Z+, the principal ideal Kt = ⟨xt⟩ is not a maximal
ideal of S. Furthermore, for each t ∈ Z+, clearly Kt is not an n-maximal ideal
of S.

Theorem 3.5. If S is an Artinian ring, then every nonmaximal proper ideal
of S is an n-maximal ideal.

Proof. Let K be a nonmaximal proper ideal of an Artinian ring S. Then K
contained in a maximal ideal M of S. By Theorem 2.12, there is a finite
maximal chain of ideals K ⊂ I1 ⊂ I2 ⊂ · · · ⊂ Im ⊂ M of S with an initial ideal
K and a terminal ideal M . So that K is a maximal ideal of length m+ 1 with
respect to a maximal chain of ideals. Let B = {t : t is the length of K with
respect to a maximal chain of ideals of the form K ⊂ J1 ⊂ J2 ⊂ · · · }. Then B
is a nonempty subset of Z+. Let n be the least element of B. Therefore, K is
an n-maximal ideal. □
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Remark 3.6. The concept of an n-maximal ideal is independent with the con-
cepts of a prime ideal, a weakly prime ideal, a primary ideal, a quasi prime
ideal, an almost prime ideal, an irreducible ideal and a strongly irreducible
ideal. For example, the ideal I = ⟨30⟩ of the ring Z is a 2-maximal but it is not
any one of a prime ideal, a weakly prime ideal, a primary ideal, a quasi prime
ideal, an almost prime ideal, an irreducible ideal and a strongly irreducible
ideal. On the other hand the ideal J = ⟨x⟩ of S = Z2[x, y, z] is a prime ideal,
consequently is a weakly prime ideal, a primary ideal, a quasi prime ideal, an
almost prime ideal, an irreducible ideal and a strongly irreducible ideal but it
is not an n-maximal ideal of S = Z2[x, y, z].

Proposition 3.7. Let I be a 1-maximal ideal of a ring S. Then

(1) Either rad(I) is a maximal ideal of S or rad(I) is a 1-maximal ideal.
(2) I is contained in at most two maximal ideals.
(3) If I is contained in exactly two maximal ideals of S say M1 and M2,

then I = M1 ∩M2.

Proof. (1) Since I is a 1-maximal ideal, then I is maximal in every maximal
ideal of S containing it. So that I ⊆ rad(I) ⊆ M , where M is a maximal ideal
containing I. Since I is a maximal ideal in M , then either rad(I) = M or
rad(I) = I.

(2) If I is contained in at least three distinct maximal ideals of S say M1,M2

and M3, then clearly the following chains are obtained:

I ⊆ M1 ∩M2 ∩M3 ⊂



M1 ∩M2 ⊂

{
M1,

M2,

M1 ∩M3 ⊂

{
M1,

M3,

M2 ∩M3 ⊂

{
M2,

M3.

This means that I is not a maximal ideal in each of M1,M2 and M3, contra-
diction.

(3) Let I be contained in exactly two maximal ideals of S say M1 and M2.
Then clearly

I ⊆ M1 ∩M2 ⊂

{
M1,

M2.

So that I = M1 ∩M2, since I is a maximal ideal in each of M1 and M2. □

Remark 3.8. If I is a 1-maximal ideal of S, then one of the following statements
must hold:

1. rad(I) = M1 ∩ M2, where M1,M2 are the only two distinct maximal
ideals of S containing I.

2. Either rad(I) = I or rad(I) = M , where M is a maximal ideal of S.
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Proof. Let I be a 1-maximal ideal of S. By Proposition 3.7, I is contained in
at most two maximal ideals.

1. If I is contained in two maximal ideals M1 and M of S, then

I ⊆ M1 ∩M2 ⊂

{
M1,

M2.

This means I = M1 ∩M2, consequently rad(I) = M1 ∩M2.
2. If I is contained in one maximal ideal of S which is M , then clearly

I ⊆ rad(I) ⊆ M. Then either rad(I) = Ior rad(I) = M . □

Theorem 3.9. Let I be an n-maximal ideal of a ring S. Then I is contained
in at most n+ 1 maximal ideals of S.

Proof. If n = 1, then by Proposition 3.7, I is contained in at most two maximal
ideals of S. Suppose the statement is true for n = k and let I be a (k + 1)-
maximal ideal. Then there is an ideal J of S such that I is maximal in J and J
is a k-maximal ideal. So that J is contained in at most k+1 maximal ideals of
S. Suppose that it is contained in exactly r maximal ideals say M1,M2, . . . ,Mr

for some 1 ≤ r ≤ k + 1. If I is contained in at least k + 3 maximal ideals say
M1,M2, . . . ,Mk+2,Mk+3, then I ⊆ J ∩Mk+2 ∩Mk+3 ⊂ J ∩Mk+2 ⊂ J . This
means that I is not maximal in J , contradiction. Therefore, I is contained in
at most k + 2 maximal ideals of S. Hence for each positive integer n, every
n-maximal ideal is contained in at most n+ 1 maximal ideals of S. □

4. Maximal dimensions

This section is devoted to introducing some new concepts and studying their
properties such as the maximal dimension of a ring, the maximal depth and
the maximal height of an ideal of a ring.

Definition 4.1. Let S be a ring. The length of a finite maximal chain of ideals
of S of the form I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ Ik is k, where k ∈ Z+ and the length of an
infinite maximal chain of ideals of S of one of the forms I0 ⊂ I1 ⊂ I2 ⊂ · · · or
J0 ⊃ J1 ⊃ J2 ⊃ · · · is ∞. The maximal dimension of S denoted by M.dim(S)
is the maximum possible length of a maximal chain of ideals. Moreover, if S
has at least two proper ideals I ⊂ J such that there is no a finite maximal chain
of ideals with an initial ideal I and a terminal ideal J , we say M.dim(S) = ∞.

Example 4.2. Consider the ring S = Zn, where n = pα1
1 pα2

2 · · · pαk

k ∈ Z+

and pi’s are distinct primes and αi ∈ Z+ for 1 ≤ i ≤ k. Then M.dim(S) =(∑k
i αi

)
− 1.

Remark 4.3. Let S be a ring. Then
1. If S is a field, then M. dim(S) = 0.
2. If S is not an Artinan ring equivalently S is not a Noetherian ring or

dim(S) > 0, then M.dim(S) = ∞.
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Proof. 1. It is obvious.
2. Let S be a non Artinian ring. By Theorem 2.12, S has at least two proper

ideals I ⊂ J such that there is no a finite chain of ideals with an initial ideal I
and a terminal ideal J . Therefore, M. dim(S) = ∞. □

Definition 4.4. Let J be a proper ideal of a ring S. The maximal depth of J
denoted by M.d(J) is the maximum length over all maximal chains of ideals of
S with an initial ideal J . If there is an ideal K of S such that J ⊂ K but there
is no a finite maximal chain of ideals with an initial ideal J and a terminal
ideal K, then M.d(J) = ∞. The maximal height of J denoted by M.h(J) is
the maximum length over all maximal chains of ideals S with a terminal ideal
J . If there is an ideal I of S such that I ⊂ J but there is no a finite maximal
chain of ideals with an initial ideal I and a terminal ideal J , then M.h(J) = ∞.

The following remark is obvious.

Remark 4.5. Let S be a ring. Then
1. K is a maximal ideal of S if and only if M.d(K) = 0.
2. J is the zero ideal of S if and only if M.h(J) = 0.
3. S is a field if and only if M.d(⟨0⟩) = M.h(⟨0⟩) = 0.

Table 1. The multiplication table of the ring S = Z2[x, y]/⟨x3, xy, y2⟩.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
× 0 1 x x2 1 + x 1 + x2 x+ x2 1 + x+ x2 y 1 + y x+ y x2 + y 1 + x+ y 1 + x2 + y x+ x2 + y 1 + x+ x2 + y

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 1 x x2 1 + x 1 + x2 x+ x2 1 + x+ x2 y 1 + y x+ y x2 + y 1 + x+ y 1 + x2 + y x+ x2 + y 1 + x+ x2 + y
3 x 0 x x2 0 x+ x2 x x2 x+ x2 0 x x2 0 x+ x2 x x2 x+ x2

4 x2 0 x2 0 0 x2 x2 0 x2 0 x2 0 0 x2 x2 0 x2

5 1 + x 0 1 + x x+ x2 x2 1 + x2 1 + x+ x2 x 1 y 1 + x+ y x+ x2 + y x2 + y 1 + x2 + y 1 + x+ x2 + y x+ y 1 + y
6 1 + x2 0 1 + x2 x x2 1 + x+ x2 1 x+ x2 1 + x y 1 + x2 + y x+ y x2 + y 1 + x+ x2 + y 1 + y x+ x2 + y 1 + x+ y
7 x+ x2 0 x+ x2 x2 0 x x+ x2 x2 x 0 x+ x2 x2 0 x x+ x2 x2 x
8 1 + x+ x2 0 1 + x+ x2 x+ x2 x2 1 1 + x x 1 + x2 y 1 + x+ x2 + y x+ x2 + y x2 + y 1 + y 1 + x+ y x+ y 1 + x2 + y
9 y 0 y 0 0 y y 0 y 0 y 0 0 y y 0 y
10 1 + y 0 1 + y x x2 1 + x+ y 1 + x2 + y x+ x2 1 + x+ x2 + y y 1 x+ y x2 + y 1 + x 1 + x2 x+ x2 + y 1 + x+ x2

11 x+ y 0 x+ y x2 0 x+ x2 + y x+ y x2 x+ x2 + y 0 x+ y x2 0 x+ x2 + y x+ y x2 x+ x2 + y
12 x2 + y 0 x2 + y 0 0 x2 + y x2 + y 0 x2 + y 0 x2 + y 0 0 x2 + y x2 + y 0 x2 + y
13 1 + x+ y 0 1 + x+ y x+ x2 x2 1 + x2 + y 1 + x+ x2 + y x 1 + y y 1 + x x+ x2 + y x2 + y 1 + x2 1 + x+ x2 x+ y 1
14 1 + x2 + y 0 1 + x2 + y x x2 1 + x+ x2 + y 1 + y x+ x2 1 + x+ y y 1 + x2 x+ y x2 + y 1 + x+ x2 1 x+ x2 + y 1 + x
15 x+ x2 + y 0 x+ x2 + y x2 0 x+ y x+ x2 + y x2 x+ y 0 x+ x2 + y x2 0 x+ y x+ x2 + y x2 x+ y
16 1 + x+ x2 + y 0 1 + x+ x2 + y x+ x2 x2 1 + y 1 + x+ y x 1 + x2 + y y 1 + x+ x2 x+ x2 + y x2 + y 1 1 + x x+ y 1

Example 4.6. 1. Consider the ring Z⟨2⟩, the localization of Z at the prime ideal
⟨2⟩. Since Z⟨2⟩ is not an Artinian ring, then by Remark 4.3, M.dim(Z⟨2⟩) = ∞.

The non zero proper ideals of Z⟨2⟩ are of the form Ik = ⟨2k⟩ where k ∈ Z+.

Then for each k ∈ Z+, M.d(Ik) = k − 1 and M.h(Ik) = ∞, since there is no
a finite maximal chain of ideals with an initial ideal ⟨0⟩ and a terminal ideal
Ik. Furthermore, M.h(⟨0⟩) = 0 and M.d(⟨0⟩) = ∞, since there is no a finite
maximal chain of ideals with an initial ideal ⟨0⟩ and a terminal ideal ⟨2⟩.

2. Consider the ring S = Z2[x, y]/⟨x3, xy, y2⟩={0, 1, x, x2, 1 + x, 1 + x2, x+
x2, 1+x+x2, y, 1+y, x+y, x2+y, 1+x+y, 1+x2+y, x+x2+y, 1+x+x2+y}
such that x3 = xy = y2 = 0. The proper ideals of S are I0 = ⟨0⟩, I1 = ⟨x2⟩ =
{0, x2}, I2 = ⟨x⟩ = {0, x, x2, x + x2}, I3 = ⟨y⟩ = {0, y}, I4 = ⟨x + y⟩ = {0, x +
y, x2, x + y + x2}, I5 = ⟨x2 + y⟩ = {0, x2 + y}, I6 = ⟨x2, y⟩ = {0, x2, y, x2 + y}
and I7 = ⟨x, y⟩ = {0, x, x2, x + x2, y, y + x, y + x2, y + x + x2}. Therefore,
M. dim(S) = 3, M.d(I0) = 3, M.d(I1) = M.d(I3) = M.d(I5) = 2, M.d(I2) =
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M.d(I4) = M.d(I6) = 1, M.d(I7) = 0,M.h(I0) = 0, M.h(I1) = M.h(I3) =
M.h(I5) = 1, M.h(I2) = M.h(I4) = M.h(I6) = 2 and M.h(I7) = 3.

The following diagram illustrates the maximal chains of ideals of the ring
S = Z2[x, y]/⟨x3, xy, y2⟩:

I0 ⊂


I1 ⊂


I2 ⊂ I7,

I4 ⊂ I7,

I6,⊂ I7,

I3 ⊂ I6 ⊂ I7,

I5 ⊂ I6 ⊂ I7.

References

[1] H. A. Ahmad and P. A. Hummadi, N sequence prime ideals, Iraqi J. Sci. 62 (2021),

no. 10, 3672–3678. https://doi.org/10.24996/ijs.2021.62.10.25

[2] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-
Wesley Publishing Co., Reading, MA, 1969.

[3] I. S. Cohen, Lengths of prime ideal chains, Amer. J. Math. 76 (1954), 654–668. https:
//doi.org/10.2307/2372708

[4] D. S. Dummit and R. M. Foote, Abstract Algebra, third edition, John Wiley & Sons, Inc.,

Hoboken, NJ, 2004.
[5] P. A. Hummadi and R. S. Rasheed, Toplogies on modules, Zanko. 5 (1992), no. 4, 59–66.

[6] H. Matsumura, Commutative ring theory, translated from the Japanese by M. Reid,

second edition, Cambridge Studies in Advanced Mathematics, 8, Cambridge University
Press, Cambridge, 1989.

Hemin A. Ahmad

Department of Mathematics
College of Education

Salahaddin University-Erbil

Erbil 4401, Iraq
Email address: hemin.ahmad@su.edu.krd

Parween A. Hummadi

Department of Mathematics
College of Education

Salahaddin University-Erbil
Erbil 4401, Iraq

Email address: Parween.Hummadi@su.edu.krd

https://doi.org/10.24996/ijs.2021.62.10.25
https://doi.org/10.2307/2372708
https://doi.org/10.2307/2372708

