MAXIMAL CHAIN OF IDEALS AND n-MAXIMAL IDEAL

Hemin A. Ahmad and Parween A. Hummadi

Abstract

In this paper, the concept of a maximal chain of ideals is introduced. Some properties of such chains are studied. We introduce some other concepts related to a maximal chain of ideals such as the n-maximal ideal, the maximal dimension of a ring $S(M \cdot \operatorname{dim}(S))$, the maximal depth of an ideal K of $S(M . d(K))$ and maximal height of an ideal $K(M . d(K))$.

1. Introduction

In this paper, S is a commutative ring with identity. A chain of ideals $K_{0} \subset K_{1} \subset K_{2} \subset \cdots$ of S is called a chain of prime ideals, if K_{i} is a prime ideal of S [6]. Such a chain of ideals is called maximal if there is no further a prime ideal can be inserted between K_{i-1} and K_{i} for each $i \in \mathbb{Z}^{+}$[3]. A chain of proper ideals $K_{0} \subset K_{1} \subset K_{2} \subset \cdots$ of S is called a prime (resp. pmaximal) ascending chain of ideals if K_{i-1} is a prime (resp. prime and maximal) ideal in K_{i} for each $i \in \mathbb{Z}^{+}[1]$. The length of a finite chain of prime ideals $K_{0} \subset K_{1} \subset K_{2} \subset \cdots \subset K_{h-1} \subset K_{h}$ of S is h. The maximum length of a chain of prime ideals is called the dimension of S and the depth (resp. height) of an ideal K of S is the maximum length over all chains of prime ideals in S with an initial (resp. a terminal) ideal $K[3,6]$. These ideas motivated us to introduce and study some new concepts. Let $J \subset K$ be two proper ideals of S. The ideal J is said to be maximal in K, if there is no ideal I of S such that $J \subset I \subset K$. A chain of proper ideals $K_{0} \subset K_{1} \subset K_{2} \subset \cdots$ of S is called the maximal chain of ideals of S if K_{t-1} is a maximal ideal in K_{t} for each $t \in \mathbb{Z}^{+}$. If $K_{0} \subset K_{1} \subset K_{2} \subset \cdots \subset K_{h}$ is a finite chain, then K_{0} is said to be the initial ideal and K_{h} is the terminal ideal of the chain. A nonmaximal proper ideal K_{0} of S is called a maximal ideal of length m with respect to the maximal chain of ideals $K_{0} \subset K_{1} \subset K_{2} \subset \cdots \subset K_{m}$, if K_{m} is a maximal ideal of S.

A ring S has the property $F M C$, if for every two proper ideals $J \subset K$ of S, there is a finite maximal chain of ideals of S with an initial ideal J and

[^0]a terminal ideal K. This property gives a clue to give a characterization of Artinian rings. In Section 3, the concept of an n-maximal ideal is introduced via a maximal chain of ideals. Some results on such ideals are obtained. The relations between an n-maximal ideal with some other types of ideals, such as a prime ideal, a weakly prime ideal, a primary ideal, a quasi prime ideal, an almost prime ideal, an irreducible ideal and a strongly irreducible ideal are discussed. In Section 4, the concepts of the maximal dimension $M \cdot \operatorname{dim}(S)$ of a ring S, the maximal depth $M . d(K)$ and the maximal height $M . h(K)$ of an ideal K of S are introduced.

2. Maximal chain of ideals

In this section, the concepts of a maximal chain of ideals of a ring and the property $F M C$ of a ring are introduced and studied. We obtain some results and properties of a maximal chain of ideals of a ring having the property $F M C$.

Definition 2.1. A chain of proper ideals $K_{0} \subset K_{1} \subset K_{2} \subset \cdots$ of a ring S is called the maximal chain of ideals of S if K_{t-1} is a maximal ideal in K_{t} for each $t \in \mathbb{Z}^{+}$. If $K_{0} \subset K_{1} \subset K_{2} \subset \cdots \subset K_{h}$ is a finite chain, then K_{0} is said to be the initial ideal and K_{h} is the terminal ideal of the chain. A nonmaximal proper ideal K_{0} of S is called a maximal ideal of length m with respect to the maximal chain of ideals $K_{0} \subset K_{1} \subset K_{2} \subset \cdots$, if there exists $m \in \mathbb{Z}^{+}$such that K_{m} is a maximal ideal of S. The length of K_{0} is said to be ∞, if there is no such the finite maximal chain of ideals with initial ideal K_{0}. Moreover, the length of a maximal ideal is defined to be 0 . Also the chain $J_{0} \supset J_{1} \supset J_{2} \supset \cdots$ is said to be a maximal chain of ideals of S, if J_{h} is a maximal ideal in J_{h-1} for each $h \in \mathbb{Z}^{+}$.

Examples 2.2. 1. Consider the ring $S=\mathbb{Z}_{p^{n}}$, where p is a prime number and $n>1$. Let $K_{i}=\left\langle p^{n-i}\right\rangle$, where $0 \leq i<n$. The chain $K_{0} \subset K_{1} \subset K_{2} \subset$ $\cdots \subset K_{n-1}$ is a finite maximal chain of ideals with an initial ideal $K_{0}=\langle 0\rangle$ and a terminal ideal $K_{n-1}=\langle p\rangle$ which is the maximal ideal of S and for each $0 \leq i<n, K_{i}$ is a maximal ideal of length $(n-1)-i$ with respect to the maximal chain of ideals $K_{i} \subset \cdots \subset K_{n-1}$.
2. Let $S=\prod_{1}^{\infty} \mathbb{Z}_{2}$ be the ring of direct product of an infinite countable copies of \mathbb{Z}_{2}. For each $i \in \mathbb{Z}^{+} \cup\{0\}$, consider the ideal

$$
K_{i}=\underbrace{\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}}_{i \text {-times }} \times\{0\} \times\{0\} \times \cdots
$$

Then for each $0 \leq i, K_{i}$ is a maximal ideal in K_{i+1}. So that $K_{i} \subset K_{i+1} \subset$ $K_{i+2} \subset \cdots$ is an infinite maximal chain of ideals of S with an initial ideal K_{i}. Therefore, for each $0 \leq i, K_{i}$ is a maximal ideal of length ∞ with respect to the maximal chain of ideals $K_{i} \subset K_{i+1} \subset K_{i+2} \subset \cdots$. Moreover for each
$i \in \mathbb{Z}^{+} \cup\{0\}$, consider the ideal

$$
J_{i}=\underbrace{\{0\} \times\{0\} \times \cdots \times\{0\}}_{(i+1) \text {-times }} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \cdots
$$

Then for each $0 \leq i, J_{i+1}$ is a maximal ideal in J_{i}. So that $J_{0} \supset J_{1} \supset J_{2} \supset \cdots$ is an infinite maximal chain of ideals of S with a terminal ideal J_{0} which is a maximal ideal of S. This means that for each $1 \leq i, J_{i}$ is a maximal ideal of length i with respect to the maximal chain of ideals $J_{0} \supset J_{1} \supset J_{2} \supset \cdots \supset J_{i}$.
3. The zero ideal of \mathbb{Z} is neither a maximal ideal of \mathbb{Z} nor maximal in any other ideal of \mathbb{Z}. This means that there is no a finite maximal chain of ideals with initial ideal $\langle 0\rangle$ and a terminal ideal which is a maximal ideal of \mathbb{Z}. So that $\langle 0\rangle$ is a maximal ideal of length ∞.
Definition 2.3 ([5]). A proper ideal I of a ring S is called strongly irreducible if for any two ideals A and B of $S, A \cap B \subseteq I$ implies $A \subseteq I$ or $B \subseteq I$.

Remark 2.4. Consider the ideal K of a ring S. Then

1. If K is a maximal ideal in more than one ideal of S, then K is not a strongly irreducible ideal consequently not prime, since if K is a maximal ideal in two ideals J and I of S, then clearly $K \subseteq J \cap I \subset I$. Since K is a maximal ideal in I, then $K=J \cap I$. Hence K is not a strongly irreducible, since $J, I \nsubseteq K$.
2. If K is maximal in exactly one ideal, then K need not be a strongly irreducible (resp. not prime) ideal. For example, consider the ideals $K_{0}=\langle 0\rangle$, $K_{1}=\langle 2\rangle=\{0,2\}, K_{2}=\langle x\rangle=\{0, x\}, K_{3}=\langle 2+x\rangle=\{0,2+x\}$ and $K_{4}=\langle 2, x\rangle=\{0,2, x, 2+x\}$ of the ring $S=\mathbb{Z}_{4}[x] /\left\langle 2 x, x^{2}\right\rangle=\{0,1,2,3, x, 1+$ $x, 2+x, 3+x\}$ such that $x^{2}=2 x=0$. Clearly each of K_{1}, K_{2} and K_{3} are maximal in exactly one ideal of S that is K_{4} but they are not strongly irreducible.

Directly from Remark 2.4 we get the following result.
Corollary 2.5. A strongly irreducible ideal of a ring S is maximal in at most one ideal of S.
Theorem 2.6. Let S be an integral domain. The zero ideal of S can not be maximal in any other proper ideal of S.

Proof. Suppose $\langle 0\rangle$ is a maximal ideal in a proper ideal K of S. Clearly K is a principal ideal say $K=\langle a\rangle$ where a is non zero non unit. Then $\langle 0\rangle \subseteq\left\langle a^{2}\right\rangle \subseteq\langle a\rangle$. Being the zero ideal maximal in K, then $\langle 0\rangle=\left\langle a^{2}\right\rangle$ or $\left\langle a^{2}\right\rangle=\langle a\rangle$. If $\langle 0\rangle=\left\langle a^{2}\right\rangle$, then $a^{2}=0$ which is a contradiction with S is an integral domain. If $\left\langle a^{2}\right\rangle=\langle a\rangle$, then $t a^{2}=a$ for some $t \in S \backslash\{0\}$. So that $a(t a-1)=0$. If $t a-1=0$, then a is a unit, contradiction, which completes the proof.
Definition 2.7. A ring S has the property $F M C$, if for every two proper ideals $J \subset K$ of S, there is a finite maximal chain of ideals of S with an initial ideal J and a terminal ideal K.

From Definition 2.7 we get the following result.
Remark 2.8. If a ring S has the property $F M C$, then every nonmaximal ideal of S is maximal in another ideal of S.

The following two theorems are needed.
Theorem 2.9 ([2]). A commutative ring with identity is Noetherian if and only if each of its ideals is finitely generated.
Theorem 2.10 ([4]). For a commutative ring S with identity the following are equivalent:
(1) S is Artinian.
(2) S is Noetherian and has Krull dimension 0.
(3) Every nonempty family of ideals of S contains a minimal element under inclusion.

Theorem 2.11. Let S be a ring which is not a field having the property FMC. Then
(1) S is not an integral domain, equivalently the zero ideal is not prime.
(2) If H is a nonmaximal proper ideal of S, then the quotient ring S / H has the property FMC.
(3) Every prime ideal of S is a maximal ideal. Equivalently $\operatorname{dim}(S)=0$.
(4) S is a Noetherian ring.
(5) Every chain of ideals $J_{0} \subset J_{1} \subset J_{2} \subset \cdots \subset J_{n}$ of S with an initial ideal J_{0} and a terminal ideal J_{n} is a subsequence of a finite maximal chain of ideals of S with an initial ideal J_{0} and a terminal ideal J_{n}.
Proof. (1) From the assumption, the zero ideal is maximal in a nonzero proper ideal of S. By Theorem 2.6, S is not an integral domain, equivalently the zero ideal is not prime.
(2) Let H be a nonmaximal proper ideal of S. Suppose $\bar{J} \subset \bar{K}$ are two ideals of S / H. Thus there are two ideals J, K of S such that $\bar{J}=J+H$ and $\bar{K}=K+H$. By the property $F M C$ of S, there is a maximal chain $J \subset K_{1} \subset K_{2} \subset \cdots \subset K_{m} \subset K$ with an initial ideal J and a terminal ideal K. This implies that there is a chain $\bar{K}_{0}=\bar{J} \subset \bar{K}_{1} \subset \bar{K}_{2} \subset \cdots \subset \bar{K}_{m} \subset$ $\bar{K}=\bar{K}_{m+1}$, where $\bar{K}_{i}=K_{i}+H$ for each $1 \leq i \leq m+1$. If $\bar{K}_{i} \neq \bar{K}_{i+1}$ and \bar{K}_{i} is not maximal in \bar{K}_{i+1}, then there is an ideal \bar{L} of S / H such that $\bar{K}_{i} \subset \bar{L} \subset \bar{K}_{i+1}$. This implies that there is an ideal L of S such that $\bar{L}=L+H$ and $K_{i} \subset L \subset K_{i+1}$ which is a contradiction. This means if $\bar{K}_{i} \neq \bar{K}_{i+1}$, then \bar{K}_{i} is maximal in \bar{K}_{i+1}. By removing the equal ideals in the chain $K_{0}=\bar{J} \subseteq$ $\bar{K}_{1} \subseteq \bar{K}_{2} \subseteq \cdots \subseteq \bar{K}_{m} \subseteq \bar{K}=\bar{K}_{m+1}$ it remains a finite maximal chain of ideals $\bar{J} \subset \bar{J}_{0} \subset \bar{J}_{1} \subset \cdots \subset \bar{J}_{n} \subset \bar{J}_{n+1}=\bar{K}$ of S / H with an initial ideal \bar{J} and a terminal ideal \bar{J}, where $\bar{K}_{i}=\bar{J}_{j}$ for some $1 \leq i \leq m+1$, which completes the proof.
(3) Consider the prime ideal Q of S. Clearly S / Q is an integral domain. By (2), S / Q has the property $F M C$. If we suppose that S / Q is not a field, then
by part (1), S / Q is not an integral domain, so we get a contradiction. Hence S / Q is a field. Consequently Q is a maximal ideal.
(4) Let $H \neq\langle 0\rangle$ be an ideal of S. Then there is a finite maximal chain of ideals $\langle 0\rangle=K_{0} \subset K_{1} \subset K_{2} \subset \cdots \subset K_{m} \subset H=K_{m+1}$ of S with an initial ideal $\langle 0\rangle$ and a terminal ideal H. Clearly for each $0<i \leq m+1, K_{i}$ is generated by an element $a_{i} \in K_{i}-K_{i-1}$ and K_{i-1} that is $K_{i}=\left\langle K_{i-1}, a_{i}\right\rangle$. So that H is finitely generated and $H=\left\langle a_{1}, a_{2}, \ldots, a_{m}\right\rangle$. Therefore, by Theorem 2.9, S is Noetherian.
(5) Let $J_{0} \subset J_{1} \subset J_{2} \subset \cdots \subset J_{n}$ be a chain of ideals of S with an initial ideal J_{0} and a terminal ideal J_{n}. If J_{i} is not maximal in J_{i+1}, then by assumption there is a finite maximal chain of ideals of S with an initial ideal J_{i} and a terminal ideal J_{i+1} of the form $J_{i} \subset J_{i 1} \subset J_{i 2} \subset \cdots \subset J_{i m_{i}} \subset J_{i+1}$. Then clearly the chain $J_{0} \subset J_{1} \subset J_{2} \subset \cdots \subset J_{n}$ with an initial ideal J_{0} and a terminal ideal J_{n} is a subsequence of a finite maximal chain of ideals of S with an initial ideal J_{0} and a terminal ideal J_{n} of the form $J_{0} \subset J_{01} \subset J_{02} \subset \cdots \subset$ $J_{0 m_{0}} \subset J_{1} \subset \cdots \subset J_{n-1} \subset J_{(n-1) 1} \subset J_{(n-1) 2} \subset \cdots \subset J_{(n-1) m_{n-1}} \subset J_{n}$.

Now, we give a characterization of an Artinian ring.
Theorem 2.12. Let S be a ring. Then S is an Artinian ring if and only if S has property FMC.

Proof. Suppose S is an Artinian ring and let $J \subset K$ be two proper ideals of S. Let $T_{1}=\{H: H$ is an ideal of S and $J \subset H \subseteq K\}$. Clearly $T_{1} \neq \phi$. Since S is an Artinian ring, by Theorem 2.10, T_{1} has a minimal ideal say I_{1}. So that J is a maximal ideal in I_{1}. If $I_{1}=K$, then $J \subset K$ is a finite maximal chain of ideals of S with an initial ideal J and a terminal ideal K. If $I_{1} \neq K$, then $T_{2}=\left\{H: H\right.$ is an ideal of S and $\left.I_{1} \subset H \subseteq K\right\}$ is a non empty family of ideals. Since S is Artinian, then T_{2} has a minimal ideal say I_{2}. So that I_{1} is a maximal ideal in I_{2}. If $I_{2}=K$, then $J \subset I_{i} \subset K$ is a finite maximal chain of ideals of S with an initial ideal J and a terminal ideal K. Proceeding in this way, we obtain a maximal chain of ideals $J \subset I_{1} \subset I_{2} \subset \cdots$ of S. By Theorem 2.10, the ring S is Noetherian. Then there exists $t \in \mathbb{Z}^{+}$such that $I_{t}=I_{t+1}=\cdots$. Clearly $I_{t} \subseteq K$. If $I_{t} \subset K$, we get a contradiction. This means $I_{t}=K$. So that we obtain the finite maximal chain of ideal $J \subset I_{1} \subset I_{2} \subset \cdots \subset I_{t} \subset K$ with an initial ideal J and a terminal ideal K. This means that S has the property $F M C$. The converse, follows from (3) and (4) of Theorem 2.11.

From Remark 2.8 and Theorem 2.12, we get the following result.
Corollary 2.13. If a ring S has a nonmaximal proper ideal which is not maximal in any other ideal of S, then S is not an Artinian ring.

3. n-maximal ideals

In this section, we introduce the concept of an n-maximal ideal of a commutative ring with identity and we illustrate it by some examples. We obtain some results and properties of such ideals.

Definition 3.1. Let I_{0} be a nonmaximal proper ideal of a ring S which has a finite length with respect to a maximal chain of ideals with an initial ideal I_{0} and let $n=\min \left\{t: t\right.$ is the length of I_{0} with respect to a maximal chain of ideals of the form $\left.I_{0} \subset I_{1} \subset I_{2} \subset \cdots\right\}$. Then I_{0} is called an n-maximal ideal and a maximal ideal of S is said to be a 0 -maximal ideal of S.

Example 3.2. Let $K=\left\langle p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{m}^{\alpha_{m}}\right\rangle$ be a nonmaximal ideal of \mathbb{Z}, where p_{i} 's are distinct primes and $m \geq 1$, and $\alpha_{i} \in \mathbb{Z}^{+}$for $1 \leq i \leq m$ with at least one of α_{i}, m is greater than one. Then K is an n-maximal ideal, where $n=\left(\sum_{1}^{m} \alpha_{i}\right)-1$. Furthermore, the zero ideal is not an n-maximal ideal of \mathbb{Z}.

Remark 3.3. Let S be a ring. Then

1. If $I_{0} \subset I_{1} \subset I_{2} \subset \cdots \subset I_{m}$ is a maximal chain of ideals of S and I_{m} is a maximal ideal of S, then for each $0 \leq i<m$, the ideal I_{i} is an n-maximal ideal for some $n \in \mathbb{Z}^{+}$.
2. If K is a nonmaximal proper ideal of S which is not maximal in any other ideal of S, then K is not an n-maximal ideal of S.

Proof. 1. Let $I_{0} \subset I_{1} \subset I_{2} \subset \cdots \subset I_{m}$ be a maximal chain of ideals of S and I_{m} is a maximal ideal of S. Clearly for each $0 \leq i<m$, the length of I_{i} is $m-i$ with respect to the maximal chain of ideals $I_{0} \subset I_{1} \subset I_{2} \subset \cdots \subset I_{m}$. The set $A_{i}=\left\{t: t\right.$ is the length of I_{i} with respect to a maximal chain of ideals of the form $\left.I_{i} \subset I_{1+i} \subset I_{i+2} \subset \cdots \subset I_{m}\right\}$ is a nonempty subset of \mathbb{Z}^{+}. Therefore, I_{i} is an n-maximal ideal, where n is the least element of A_{i}.

2 . It is clear.
Example 3.4. Consider the ring $S=\mathbb{Z}_{2}\left[x_{1}, x_{2}, \ldots\right]$, where x_{i} are indeterminates. Then for each $t \in \mathbb{Z}^{+}$, the principal ideal $K_{t}=\left\langle x_{t}\right\rangle$ is not a maximal ideal of S. Furthermore, for each $t \in \mathbb{Z}^{+}$, clearly K_{t} is not an n-maximal ideal of S.

Theorem 3.5. If S is an Artinian ring, then every nonmaximal proper ideal of S is an n-maximal ideal.

Proof. Let K be a nonmaximal proper ideal of an Artinian ring S. Then K contained in a maximal ideal M of S. By Theorem 2.12, there is a finite maximal chain of ideals $K \subset I_{1} \subset I_{2} \subset \cdots \subset I_{m} \subset M$ of S with an initial ideal K and a terminal ideal M. So that K is a maximal ideal of length $m+1$ with respect to a maximal chain of ideals. Let $B=\{t: t$ is the length of K with respect to a maximal chain of ideals of the form $\left.K \subset J_{1} \subset J_{2} \subset \cdots\right\}$. Then B is a nonempty subset of \mathbb{Z}^{+}. Let n be the least element of B. Therefore, K is an n-maximal ideal.

Remark 3.6. The concept of an n-maximal ideal is independent with the concepts of a prime ideal, a weakly prime ideal, a primary ideal, a quasi prime ideal, an almost prime ideal, an irreducible ideal and a strongly irreducible ideal. For example, the ideal $I=\langle 30\rangle$ of the ring \mathbb{Z} is a 2 -maximal but it is not any one of a prime ideal, a weakly prime ideal, a primary ideal, a quasi prime ideal, an almost prime ideal, an irreducible ideal and a strongly irreducible ideal. On the other hand the ideal $J=\langle x\rangle$ of $S=\mathbb{Z}_{2}[x, y, z]$ is a prime ideal, consequently is a weakly prime ideal, a primary ideal, a quasi prime ideal, an almost prime ideal, an irreducible ideal and a strongly irreducible ideal but it is not an n-maximal ideal of $S=\mathbb{Z}_{2}[x, y, z]$.

Proposition 3.7. Let I be a 1-maximal ideal of a ring S. Then
(1) Either $\operatorname{rad}(I)$ is a maximal ideal of S or $\operatorname{rad}(I)$ is a 1-maximal ideal.
(2) I is contained in at most two maximal ideals.
(3) If I is contained in exactly two maximal ideals of S say M_{1} and M_{2}, then $I=M_{1} \cap M_{2}$.

Proof. (1) Since I is a 1-maximal ideal, then I is maximal in every maximal ideal of S containing it. So that $I \subseteq \operatorname{rad}(I) \subseteq M$, where M is a maximal ideal containing I. Since I is a maximal ideal in M, then either $\operatorname{rad}(I)=M$ or $\operatorname{rad}(I)=I$.
(2) If I is contained in at least three distinct maximal ideals of S say M_{1}, M_{2} and M_{3}, then clearly the following chains are obtained:

This means that I is not a maximal ideal in each of M_{1}, M_{2} and M_{3}, contradiction.
(3) Let I be contained in exactly two maximal ideals of S say M_{1} and M_{2}. Then clearly

$$
I \subseteq M_{1} \cap M_{2} \subset\left\{\begin{array}{l}
M_{1} \\
M_{2}
\end{array}\right.
$$

So that $I=M_{1} \cap M_{2}$, since I is a maximal ideal in each of M_{1} and M_{2}.
Remark 3.8. If I is a 1-maximal ideal of S, then one of the following statements must hold:

1. $\operatorname{rad}(I)=M_{1} \cap M_{2}$, where M_{1}, M_{2} are the only two distinct maximal ideals of S containing I.
2. Either $\operatorname{rad}(I)=I$ or $\operatorname{rad}(I)=M$, where M is a maximal ideal of S.

Proof. Let I be a 1-maximal ideal of S. By Proposition 3.7, I is contained in at most two maximal ideals.

1. If I is contained in two maximal ideals M_{1} and M of S, then

$$
I \subseteq M_{1} \cap M_{2} \subset\left\{\begin{array}{l}
M_{1}, \\
M_{2}
\end{array}\right.
$$

This means $I=M_{1} \cap M_{2}$, consequently $\operatorname{rad}(I)=M_{1} \cap M_{2}$.
2. If I is contained in one maximal ideal of S which is M, then clearly $I \subseteq \operatorname{rad}(I) \subseteq M$. Then either $\operatorname{rad}(I)=I$ or $\operatorname{rad}(I)=M$.

Theorem 3.9. Let I be an n-maximal ideal of a ring S. Then I is contained in at most $n+1$ maximal ideals of S.

Proof. If $n=1$, then by Proposition 3.7, I is contained in at most two maximal ideals of S. Suppose the statement is true for $n=k$ and let I be a $(k+1)$ maximal ideal. Then there is an ideal J of S such that I is maximal in J and J is a k-maximal ideal. So that J is contained in at most $k+1$ maximal ideals of S. Suppose that it is contained in exactly r maximal ideals say $M_{1}, M_{2}, \ldots, M_{r}$ for some $1 \leq r \leq k+1$. If I is contained in at least $k+3$ maximal ideals say $M_{1}, M_{2}, \ldots, M_{k+2}, M_{k+3}$, then $I \subseteq J \cap M_{k+2} \cap M_{k+3} \subset J \cap M_{k+2} \subset J$. This means that I is not maximal in J, contradiction. Therefore, I is contained in at most $k+2$ maximal ideals of S. Hence for each positive integer n, every n-maximal ideal is contained in at most $n+1$ maximal ideals of S.

4. Maximal dimensions

This section is devoted to introducing some new concepts and studying their properties such as the maximal dimension of a ring, the maximal depth and the maximal height of an ideal of a ring.

Definition 4.1. Let S be a ring. The length of a finite maximal chain of ideals of S of the form $I_{0} \subset I_{1} \subset I_{2} \subset \cdots \subset I_{k}$ is k, where $k \in \mathbb{Z}^{+}$and the length of an infinite maximal chain of ideals of S of one of the forms $I_{0} \subset I_{1} \subset I_{2} \subset \cdots$ or $J_{0} \supset J_{1} \supset J_{2} \supset \cdots$ is ∞. The maximal dimension of S denoted by $M . \operatorname{dim}(S)$ is the maximum possible length of a maximal chain of ideals. Moreover, if S has at least two proper ideals $I \subset J$ such that there is no a finite maximal chain of ideals with an initial ideal I and a terminal ideal J, we say $M \cdot \operatorname{dim}(S)=\infty$.

Example 4.2. Consider the ring $S=\mathbb{Z}_{n}$, where $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}} \in \mathbb{Z}^{+}$ and p_{i} 's are distinct primes and $\alpha_{i} \in \mathbb{Z}^{+}$for $1 \leq i \leq k$. Then $M . \operatorname{dim}(S)=$ $\left(\sum_{i}^{k} \alpha_{i}\right)-1$.

Remark 4.3. Let S be a ring. Then

1. If S is a field, then $M \cdot \operatorname{dim}(S)=0$.
2. If S is not an Artinan ring equivalently S is not a Noetherian ring or $\operatorname{dim}(S)>0$, then $M \cdot \operatorname{dim}(S)=\infty$.

Proof. 1. It is obvious.
2. Let S be a non Artinian ring. By Theorem 2.12, S has at least two proper ideals $I \subset J$ such that there is no a finite chain of ideals with an initial ideal I and a terminal ideal J. Therefore, $M \cdot \operatorname{dim}(S)=\infty$.

Definition 4.4. Let J be a proper ideal of a ring S. The maximal depth of J denoted by M.d(J) is the maximum length over all maximal chains of ideals of S with an initial ideal J. If there is an ideal K of S such that $J \subset K$ but there is no a finite maximal chain of ideals with an initial ideal J and a terminal ideal K, then $M \cdot d(J)=\infty$. The maximal height of J denoted by $M \cdot h(J)$ is the maximum length over all maximal chains of ideals S with a terminal ideal J. If there is an ideal I of S such that $I \subset J$ but there is no a finite maximal chain of ideals with an initial ideal I and a terminal ideal J, then $M . h(J)=\infty$.

The following remark is obvious.
Remark 4.5. Let S be a ring. Then

1. K is a maximal ideal of S if and only if $M . d(K)=0$.
2. J is the zero ideal of S if and only if $M \cdot h(J)=0$.
3. S is a field if and only if $M \cdot d(\langle 0\rangle)=M \cdot h(\langle 0\rangle)=0$.

Table 1. The multiplication table of the ring $S=\mathbb{Z}_{2}[x, y] /\left\langle x^{3}, x y, y^{2}\right\rangle$.

Example 4.6.1. Consider the ring $\mathbb{Z}_{\langle 2\rangle}$, the localization of \mathbb{Z} at the prime ideal $\langle 2\rangle$. Since $\mathbb{Z}_{\langle 2\rangle}$ is not an Artinian ring, then by Remark 4.3, M. $\operatorname{dim}\left(\mathbb{Z}_{\langle 2\rangle}\right)=\infty$. The non zero proper ideals of $\mathbb{Z}_{\langle 2\rangle}$ are of the form $I_{k}=\left\langle 2^{k}\right\rangle$ where $k \in \mathbb{Z}^{+}$. Then for each $k \in \mathbb{Z}^{+}, M \cdot d\left(I_{k}\right)=k-1$ and $M \cdot h\left(I_{k}\right)=\infty$, since there is no a finite maximal chain of ideals with an initial ideal $\langle 0\rangle$ and a terminal ideal I_{k}. Furthermore, $M \cdot h(\langle 0\rangle)=0$ and $M \cdot d(\langle 0\rangle)=\infty$, since there is no a finite maximal chain of ideals with an initial ideal $\langle 0\rangle$ and a terminal ideal $\langle 2\rangle$.
2. Consider the ring $S=\mathbb{Z}_{2}[x, y] /\left\langle x^{3}, x y, y^{2}\right\rangle=\left\{0,1, x, x^{2}, 1+x, 1+x^{2}, x+\right.$ $\left.x^{2}, 1+x+x^{2}, y, 1+y, x+y, x^{2}+y, 1+x+y, 1+x^{2}+y, x+x^{2}+y, 1+x+x^{2}+y\right\}$ such that $x^{3}=x y=y^{2}=0$. The proper ideals of S are $I_{0}=\langle 0\rangle, I_{1}=\left\langle x^{2}\right\rangle=$ $\left\{0, x^{2}\right\}, I_{2}=\langle x\rangle=\left\{0, x, x^{2}, x+x^{2}\right\}, I_{3}=\langle y\rangle=\{0, y\}, I_{4}=\langle x+y\rangle=\{0, x+$ $\left.y, x^{2}, x+y+x^{2}\right\}, I_{5}=\left\langle x^{2}+y\right\rangle=\left\{0, x^{2}+y\right\}, I_{6}=\left\langle x^{2}, y\right\rangle=\left\{0, x^{2}, y, x^{2}+y\right\}$ and $I_{7}=\langle x, y\rangle=\left\{0, x, x^{2}, x+x^{2}, y, y+x, y+x^{2}, y+x+x^{2}\right\}$. Therefore, $M \cdot \operatorname{dim}(S)=3, M \cdot d\left(I_{0}\right)=3, M \cdot d\left(I_{1}\right)=M \cdot d\left(I_{3}\right)=M \cdot d\left(I_{5}\right)=2, M \cdot d\left(I_{2}\right)=$
$M \cdot d\left(I_{4}\right)=M \cdot d\left(I_{6}\right)=1, M \cdot d\left(I_{7}\right)=0, M \cdot h\left(I_{0}\right)=0, M \cdot h\left(I_{1}\right)=M \cdot h\left(I_{3}\right)=$ $M \cdot h\left(I_{5}\right)=1, M \cdot h\left(I_{2}\right)=M \cdot h\left(I_{4}\right)=M \cdot h\left(I_{6}\right)=2$ and $M \cdot h\left(I_{7}\right)=3$.

The following diagram illustrates the maximal chains of ideals of the ring $S=\mathbb{Z}_{2}[x, y] /\left\langle x^{3}, x y, y^{2}\right\rangle:$

$$
I_{0} \subset\left\{\begin{array}{l}
I_{1} \subset\left\{\begin{array}{l}
I_{2} \subset I_{7}, \\
I_{4} \subset I_{7}, \\
I_{6}, \subset I_{7},
\end{array}\right. \\
I_{3} \subset I_{6} \subset I_{7}, \\
I_{5} \subset I_{6} \subset I_{7} .
\end{array}\right.
$$

References

[1] H. A. Ahmad and P. A. Hummadi, N sequence prime ideals, Iraqi J. Sci. 62 (2021), no. 10, 3672-3678. https://doi.org/10.24996/ijs.2021.62.10.25
[2] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, AddisonWesley Publishing Co., Reading, MA, 1969.
[3] I. S. Cohen, Lengths of prime ideal chains, Amer. J. Math. 76 (1954), 654-668. https: //doi.org/10.2307/2372708
[4] D. S. Dummit and R. M. Foote, Abstract Algebra, third edition, John Wiley \& Sons, Inc., Hoboken, NJ, 2004.
[5] P. A. Hummadi and R. S. Rasheed, Toplogies on modules, Zanko. 5 (1992), no. 4, 59-66.
[6] H. Matsumura, Commutative ring theory, translated from the Japanese by M. Reid, second edition, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, Cambridge, 1989.

Hemin A. Ahmad
Department of Mathematics
College of Education
Salahaddin University-Erbil
Erbil 4401, IraQ
Email address: hemin.ahmad@su.edu.krd
Parween A. Hummadi
Department of Mathematics
College of Education
Salahaddin University-Erbil
Erbil 4401, Iraq
Email address: Parween.Hummadi@su.edu.krd

[^0]: Received April 9, 2022; Accepted May 25, 2022.
 2020 Mathematics Subject Classification. 13E99.
 Key words and phrases. Maximal chain, property FMC, Artinian ring, n-maximal ideal, maximal dimension, maximal depth, maximal height.

