• 제목/요약/키워드: (g, f)-factor

검색결과 403건 처리시간 0.026초

BINDING NUMBER AND HAMILTONIAN (g, f)-FACTORS IN GRAPHS

  • Cai, Jiansheng;Liu, Guizhen
    • Journal of applied mathematics & informatics
    • /
    • 제25권1_2호
    • /
    • pp.383-388
    • /
    • 2007
  • A (g, f)-factor F of a graph G is Called a Hamiltonian (g, f)-factor if F contains a Hamiltonian cycle. The binding number of G is defined by $bind(G)\;=\;{min}\;\{\;{\frac{{\mid}N_GX{\mid}}{{\mid}X{\mid}}}\;{\mid}\;{\emptyset}\;{\neq}\;X\;{\subset}\;V(G)},\;{N_G(X)\;{\neq}\;V(G)}\;\}$. Let G be a connected graph, and let a and b be integers such that $4\;{\leq}\;a\;<\;b$. Let g, f be positive integer-valued functions defined on V(G) such that $a\;{\leq}\;g(x)\;<\;f(x)\;{\leq}\;b$ for every $x\;{\in}\;V(G)$. In this paper, it is proved that if $bind(G)\;{\geq}\;{\frac{(a+b-5)(n-1)}{(a-2)n-3(a+b-5)},}\;{\nu}(G)\;{\geq}\;{\frac{(a+b-5)^2}{a-2}}$ and for any nonempty independent subset X of V(G), ${\mid}\;N_{G}(X)\;{\mid}\;{\geq}\;{\frac{(b-3)n+(2a+2b-9){\mid}X{\mid}}{a+b-5}}$, then G has a Hamiltonian (g, f)-factor.

NEIGHBORHOOD CONDITION AND FRACTIONAL f-FACTORS IN GRAPHS

  • Liu, Hongxia;Liu, Guizhen
    • Journal of applied mathematics & informatics
    • /
    • 제27권5_6호
    • /
    • pp.1157-1163
    • /
    • 2009
  • Let G be a graph with vertex set V(G) and let f be a nonnegative integer-valued function defined on V(G). A spanning subgraph F of G is called a fractional f-factor if $d^h_G$(x)=f(x) for all x $\in$ for all x $\in$ V (G), where $d^h_G$ (x) = ${\Sigma}_{e{\in}E_x}$ h(e) is the fractional degree of x $\in$ V(F) with $E_x$ = {e : e = xy $\in$ E|G|}. In this paper it is proved that if ${\delta}(G){\geq}{\frac{b^2(k-1)}{a}},\;n>\frac{(a+b)(k(a+b)-2)}{a}$ and $|N_G(x_1){\cup}N_G(x_2){\cup}{\cdots}{\cup}N_G(x_k)|{\geq}\frac{bn}{a+b}$ for any independent subset ${x_1,x_2,...,x_k}$ of V(G), then G has a fractional f-factor. Where k $\geq$ 2 be a positive integer not larger than the independence number of G, a and b are integers such that 1 $\leq$ a $\leq$ f(x) $\leq$ b for every x $\in$ V(G). Furthermore, we show that the result is best possible in some sense.

  • PDF

RANDOMLY ORTHOGONAL FACTORIZATIONS OF (0,mf - (m - 1)r)-GRAPHS

  • Zhou, Sizhong;Zong, Minggang
    • 대한수학회지
    • /
    • 제45권6호
    • /
    • pp.1613-1622
    • /
    • 2008
  • Let G be a graph with vertex set V(G) and edge set E(G), and let g, f be two nonnegative integer-valued functions defined on V(G) such that $g(x)\;{\leq}\;f(x)$ for every vertex x of V(G). We use $d_G(x)$ to denote the degree of a vertex x of G. A (g, f)-factor of G is a spanning subgraph F of G such that $g(x)\;{\leq}\;d_F(x)\;{\leq}\;f(x)$ for every vertex x of V(F). In particular, G is called a (g, f)-graph if G itself is a (g, f)-factor. A (g, f)-factorization of G is a partition of E(G) into edge-disjoint (g, f)-factors. Let F = {$F_1$, $F_2$, ..., $F_m$} be a factorization of G and H be a subgraph of G with mr edges. If $F_i$, $1\;{\leq}\;i\;{\leq}\;m$, has exactly r edges in common with H, we say that F is r-orthogonal to H. If for any partition {$A_1$, $A_2$, ..., $A_m$} of E(H) with $|A_i|=r$ there is a (g, f)-factorization F = {$F_1$, $F_2$, ..., $F_m$} of G such that $A_i\;{\subseteq}E(F_i)$, $1\;{\leq}\;i\;{\leq}\;m$, then we say that G has (g, f)-factorizations randomly r-orthogonal to H. In this paper it is proved that every (0, mf - (m - 1)r)-graph has (0, f)-factorizations randomly r-orthogonal to any given subgraph with mr edges if $f(x)\;{\geq}\;3r\;-\;1$ for any $x\;{\in}\;V(G)$.

NOTE ON CONNECTED (g, f)-FACTORS OF GRAPHS

  • Zhou, Sizhong;Wu, Jiancheng;Pan, Quanru
    • Journal of applied mathematics & informatics
    • /
    • 제28권3_4호
    • /
    • pp.909-912
    • /
    • 2010
  • In this note we present a short proof of the following result by Zhou, Liu and Xu. Let G be a graph of order n, and let a and b be two integers with 1 $\leq$ a < b and b $\geq$ 3, and let g and f be two integer-valued functions defined on V(G) such that a $\leq$ g(x) < f(x) $\leq$ b for each $x\;{\in}\;V(G)$ and f(V(G)) - V(G) even. If $n\;{\geq}\;\frac{(a+b-1)^2+1}{a}$ and $\delta(G)\;{\geq}\;\frac{(b-1)n}{a+b-1}$,then G has a connected (g, f)-factor.

BINDING NUMBERS AND FRACTIONAL (g, f, n)-CRITICAL GRAPHS

  • ZHOU, SIZHONG;SUN, ZHIREN
    • Journal of applied mathematics & informatics
    • /
    • 제34권5_6호
    • /
    • pp.435-441
    • /
    • 2016
  • Let G be a graph, and let g, f be two nonnegative integer-valued functions defined on V (G) with g(x) ≤ f(x) for each x ∈ V (G). A graph G is called a fractional (g, f, n)-critical graph if after deleting any n vertices of G the remaining graph of G admits a fractional (g, f)-factor. In this paper, we obtain a binding number condition for a graph to be a fractional (g, f, n)-critical graph, which is an extension of Zhou and Shen's previous result (S. Zhou, Q. Shen, On fractional (f, n)-critical graphs, Inform. Process. Lett. 109(2009)811-815). Furthermore, it is shown that the lower bound on the binding number condition is sharp.

ON π𝔉-EMBEDDED SUBGROUPS OF FINITE GROUPS

  • Guo, Wenbin;Yu, Haifeng;Zhang, Li
    • 대한수학회보
    • /
    • 제53권1호
    • /
    • pp.91-102
    • /
    • 2016
  • A chief factor H/K of G is called F-central in G provided $(H/K){\rtimes}(G/C_G(H/K)){\in}{\mathfrak{F}}$. A normal subgroup N of G is said to be ${\pi}{\mathfrak{F}}$-hypercentral in G if either N = 1 or $N{\neq}1$ and every chief factor of G below N of order divisible by at least one prime in ${\pi}$ is $\mathfrak{F}$-central in G. The symbol $Z_{{\pi}{\mathfrak{F}}}(G)$ denotes the ${\pi}{\mathfrak{F}}$-hypercentre of G, that is, the product of all the normal ${\pi}{\mathfrak{F}}$-hypercentral subgroups of G. We say that a subgroup H of G is ${\pi}{\mathfrak{F}}$-embedded in G if there exists a normal subgroup T of G such that HT is s-quasinormal in G and $(H{\cap}T)H_G/H_G{\leq}Z_{{\pi}{\mathfrak{F}}}(G/H_G)$, where $H_G$ is the maximal normal subgroup of G contained in H. In this paper, we use the ${\pi}{\mathfrak{F}}$-embedded subgroups to determine the structures of finite groups. In particular, we give some new characterizations of p-nilpotency and supersolvability of a group.

TIGHT TOUGHNESS CONDITION FOR FRACTIONAL (g, f, n)-CRITICAL GRAPHS

  • Gao, Wei;Liang, Li;Xu, Tianwei;Zhou, Juxiang
    • 대한수학회지
    • /
    • 제51권1호
    • /
    • pp.55-65
    • /
    • 2014
  • A graph G is called a fractional (g, f, n)-critical graph if any n vertices are removed from G, then the resulting graph admits a fractional (g, f)-factor. In this paper, we determine the new toughness condition for fractional (g, f, n)-critical graphs. It is proved that G is fractional (g, f, n)-critical if $t(G){\geq}\frac{b^2-1+bn}{a}$. This bound is sharp in some sense. Furthermore, the best toughness condition for fractional (a, b, n)-critical graphs is given.

연구개발사업의 투입.산출요소 및 연구결과 평가의 상호관계 분석 - 원자력중장기연구개발사업을 중심으로- (An Analysis on the Relationship to Input/Output factor and Evaluation Grade in Nuclear R&D Program)

  • 홍정진;원병출;양맹호
    • 한국기술혁신학회:학술대회논문집
    • /
    • 한국기술혁신학회 2004년도 춘계학술대회
    • /
    • pp.48-56
    • /
    • 2004
  • To perform R&D program, it is necessary to invest input factor(I/F). And these factor are converted to output factors(O/F) at the end of R&D program. Pee. reviewers evaluate output factors and produce evaluation grades(E/G). This paper try to analyze the relationship to I/F, O/F and E/G, According to the analysis results, the relation between I/F and E/G is as weak as the relation between O/F and E/G. The strength of relationship is relatively very strong in the relation between I/F and O/F

  • PDF

[2,3]-FACTORS IN A 3-CONNECTED INFINITE PLANAR GRAPH

  • Jung, Hwan-Ok
    • Journal of applied mathematics & informatics
    • /
    • 제10권1_2호
    • /
    • pp.27-40
    • /
    • 2002
  • For two integers m, n with m $\leq$ n, an [m,n]-factor F in a graph G is a spanning subgraph of G with m $\leq$ d$\_$F/(v) $\leq$ n for all v ∈ V(F). In 1996, H. Enomoto et al. proved that every 3-connected Planar graph G with d$\_$G/(v) $\geq$ 4 for all v ∈ V(G) contains a [2,3]-factor. In this paper. we extend their result to all 3-connected locally finite infinite planar graphs containing no unbounded faces.