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TIGHT TOUGHNESS CONDITION FOR FRACTIONAL

(g, f, n)-CRITICAL GRAPHS

Wei Gao, Li Liang, Tianwei Xu, and Juxiang Zhou

Abstract. A graphG is called a fractional (g, f, n)-critical graph if any n

vertices are removed from G, then the resulting graph admits a fractional
(g, f)-factor. In this paper, we determine the new toughness condition
for fractional (g, f, n)-critical graphs. It is proved that G is fractional

(g, f, n)-critical if t(G) ≥
b
2−1+bn

a
. This bound is sharp in some sense.

Furthermore, the best toughness condition for fractional (a, b, n)-critical
graphs is given.

1. Introduction

All graphs considered in this paper are finite, loopless, and without multiple
edges. The notation and terminology used but undefined in this paper can be
found in [2]. Let G be a graph with the vertex set V (G) and the edge set E(G).
For a vertex x ∈ V (G), we use dG(x) and NG(x) to denote the degree and the
neighborhood of x in G, respectively. Let δ(G) denote the minimum degree of
G. For any S ⊆ V (G), the subgraph of G induced by S is denoted by G[S].

Suppose that g and f are two integer-valued functions on V (G) such that
0 ≤ g(x) ≤ f(x) for all x ∈ V (G). A spanning subgraph F of G is called a
(g, f)-factor if g(x) ≤ dF (x) ≤ f(x) for each x ∈ V (G). A fractional (g, f)-
factor is a function h that assigns to each edge of a graph G a number in [0,1]
so that for each vertex x we have g(x) ≤

∑

e∈E(x) h(e) ≤ f(x). If g(x) = a,

f(x) = b for all x ∈ V (G), then a fractional (g, f)-factor is a fractional [a, b]-
factor. Moreover, if g(x) = f(x) = k (k ≥ 1 is an integer throughout this
paper, and we will not reiterate it again) for all x ∈ V (G), then a fractional
(g, f)-factor is just a fractional k-factor.
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Liu and Zhang [4] determined a necessary and sufficient condition for a graph
to have a fractional (g, f)-factor.

Theorem 1 (Liu and Zhang [4]). Suppose that f and g are two integer-valued

functions defined on the vertex set of a graph G such that 0 ≤ g(x) ≤ f(x) for

each x ∈ V (G). Then G has a fractional (g, f)-factor if and only if for any

subset S of V (G),

f(S)− g(T ) + dG−S(T ) ≥ 0,

where T = {x ∈ V (G) \ S : dG−S(x) ≤ g(x)}.

Liu and Zhang [4, 5] showed some characters on fractional (g, f)-factor.
A graph G is called a fractional (g, f, n)-critical graph if after deleting any n

vertices fromG, the resulting graph still has a fractional (g, f)-factor. Similarly,
a graph G is called a (g, f, n)-critical graph if after removing any n vertices from
G, the resulting graph admits a (g, f)-factor. Several sufficient conditions for
(a, b, n)-critical graphs can refer [9] and [10].

Liu [7] investigated the necessary and sufficient condition for a graph G to
be a fractional (g, f, n)-critical graph.

Lemma 2 (Liu [7]). Let G be a graph and let g, f be two non-negative integer-

valued functions defined on V (G) satisfying g(x) ≤ f(x) for all x ∈ V (G). Let

n be a positive integer. Then G is a fractional (g, f, n)-critical graph if and

only if for any subset S of V (G) with |S| ≥ n

(1) f(S)− g(T ) + dG−S(T ) ≥ max{f(U) : U ⊆ S, |U | = n},

where T = {x ∈ V (G) \ S : dG−S(x) ≤ g(x)}.

The proof of our main result relies heavily on the following lemma, which
can be regarded as an equal version of Lemma 2.

Lemma 3. Let G be a graph and let g, f be two non-negative integer-valued

functions defined on V (G) satisfying g(x) ≤ f(x) for all x ∈ V (G). Let n be a

non-negative integer. Then G is a fractional (g, f, n)-critical graph if and only

if

(2) f(S)− g(T ) + dG−S(T ) ≥ max{f(U) : U ⊆ S, |U | = n}

for any disjoint subsets S and T of V (G) with |S| ≥ n.

The notion of toughness was first introduced by Chvátal in [3]: if G is a
complete graph, t(G) = ∞; if G is not complete,

t(G) = min{
|S|

ω(G− S)
: ω(G− S) ≥ 2}

and where ω(G− S) is the number of connected components of G− S.
Some toughness conditions for a graph to have a fractional factor were given

in [1, 8] by Bian, Liu and Cai. Liu [7] studied the relationship between tough-
ness and fractional (g, f, n)-critical graphs and proved the following result.
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Theorem 4 (Liu [7]). Let G be a graph and let g, f be two non-negative

integer-valued functions defined on V (G) satisfying a ≤ g(x) ≤ f(x) ≤ b with

1 ≤ a ≤ b and b ≥ 2 for all x ∈ V (G), where a, b are positive integers. If

t(G) ≥ (b2−1)(n+1)
a

, then G is a fractional (g, f, n)-critical graph, where n is a

nonnegative integer with |V (G)| ≥ n+ 1.

However, the author of [7] only verified that this bound of t(G) is sharp
when n = 0, but didn’t know whether the condition is best or not when n ≥ 1.
Thus, the problem of tight t(G) for fractional (g, f, n)-critical graphs is still
open. It inspires us to think about the best t(G) for fractional (g, f, n)-critical
graphs. In this paper, we determine sharp bound of t(G). Our main result to
be proved in next section can be stated as follows.

Theorem 5. Let G be a graph and let g, f be two integer-valued functions

defined on V (G) satisfying a ≤ g(x) ≤ f(x) ≤ b with 1 ≤ a ≤ b and b ≥ 2 for

all x ∈ V (G), where a, b are positive integers. Let n be a non-negative integer.

|V (G)| ≥ n+ b+ 1 if G is complete. If t(G) ≥ b2−1+bn
a

, then G is a fractional

(g, f, n)-critical graph.

Let m be a positive integer. To see the sharpness of Theorem 5, we construct
the following graph G:

V (G) = A ∪B ∪ C,

where A, B and C are disjoint with |A| = (mb + 1)(b − 1 + n), |B| = (ma +
1)(b − 1), and |C| = m(b − 1) with a = b. Both A and C are cliques in
G, while B is isomorphic to (ma + 1)Kb−1. Other edges in G are {uv :
u ∈ B, v ∈ C} and {u1v1, u2v2, . . . , u(ma+1)(b−1)v(ma+1)(b−1)}, where V (B) =
{u1, u2, . . . , u(ma+1)(b−1)} and {v1, v2, . . . , v(ma+1)(b−1)} ⊂ A. If b = 2, let S =
(A−{u})∪C, where u ∈ A, then |S| = 3m+n(2m+1) and ω(G−S) = ma+1;
if b ≥ 3, let S = (A− {u}) ∪ {v} ∪ C, where u ∈ A and v ∈ B is matched to u

in G. Then |S| = (mb +m + 1)(b − 1) + n(mb + 1) and ω(G − S) = ma + 2.
This follows that

t(G) =

{

(mb+m+1)(b−1)+n(mb+1)
ma+2 , b ≥ 3,

3m+n(2m+1)
ma+1 , b = 2.

Thus, t(G) can be made arbitrarily close to b2−1+bn
a

when m is large enough.
Let V0 ⊂ V (A) \ {v1, v2, . . . , v(ma+1)(b−1)} with |V0| = n, S = C ∪ V0 and

T = B. Let g(x) = f(x) = a if x ∈ S and g(x) = f(x) = b if x ∈ T . We have
f(S)− f(U) = a|S| for any U ⊂ S with |U | = n and dG−S(x) = b− 1 for each
x ∈ T . Thus,

f(S)− g(T ) + dG−S(T )−max{f(U) : U ⊆ S, |U | = n}

= am(b− 1)− (ma+ 1)(b− 1) < 0.

By Lemma 3, G is not a fractional (g, f, n)-critical graph. In this sense, the
toughness bound in Theorem 5 is best possible.
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Next, the restriction on |V (G)| for complete graph is necessary and can not
be weakened by |V (G)| ≥ n + b. If |V (G)| = n + b. Deleting n vertices from
G, the resulting graph G′ satisfies dG′(v) = b − 1 for each v ∈ V (G′). Let
f(x) = g(x) = b for every x ∈ V (G′). Then G′ has no fractional (g, f)-factor.
Thus, G is not a fractional (g, f, n)-critical graph.

To prove Theorem 5, we need the following lemmas.

Lemma 6 (Chvátal [3]). If a graph G is not complete, then t(G) ≤ 1
2δ(G).

Lemma 7 (Liu and Zhang [6]). Let G be a graph and let H = G[T ] such that

δ(H) ≥ 1 and 1 ≤ dG(x) ≤ k − 1 for every x ∈ V (H), where T ⊆ V (G) and

k ≥ 2. Let T1, . . . , Tk−1 be a partition of the vertices of H satisfying dG(x) = j

for each x ∈ Tj where we allow some Tj to be empty. If each component of H

has a vertex of degree at most k − 2 in G, then H has a maximal independent

set I and a covering set C = V (H)− I such that

k−1
∑

j=1

(k − j)cj ≤
k−1
∑

j=1

(k − 2)(k − j)ij ,

where cj = |C ∩ Tj| and ij = |I ∩ Tj| for every j = 1, . . . , k − 1.

By analyzing proving process of Lemma 2.2 in [6]: “for each vertex x ∈ In
and dHn

(x) = k− 1, there exists a vertex y ∈ In such that NHn
(x)∩NHn

(y) 6=
∅”, we infer the following equal version.

Lemma 8 (Liu and Zhang [6]). Let G be a graph and let H = G[T ] such that

dG(x) = k − 1 for every x ∈ V (H) and no component of H is isomorphic to

Kk, where T ⊆ V (G) and k ≥ 2. Then there exist an independent set I and

the covering set C = V (H)− I of H satisfying

|V (H)| ≤
k

∑

i=1

(k − i+ 1)|I(i)| −
|I(1)|

2

and

|C| ≤
k

∑

i=1

(k − i)|I(i)| −
|I(1)|

2
,

where I(i) = {x ∈ I, dH(x) = k − i}, 1 ≤ i ≤ k and
k
∑

i=1

|I(i)| = |I|.

2. Proof of Theorem 5

If G is complete, due to |V (G)| ≥ n + b + 1, clearly, G has a fractional
(g, f)-factor after deleting any n vertices. In the following, we assume that G
is not complete.

Suppose that G satisfies the conditions of Theorem 5, but is not a fractional
(g, f, n)-critical graph. According to Lemma 3 there exist disjoint subsets S
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and T of V (G) such that

(3) a|S|+
∑

x∈T

dG−S(x) − b|T | ≤ f(S)− g(T ) + dG−S(T ) < bn.

We choose subsets S and T such that |T | is minimum. Obviously, T 6= ∅.

Claim 1. dG−S(x) ≤ g(x)− 1 ≤ b− 1 for any x ∈ T .

Proof. If dG−S(x) ≥ g(x) for some x ∈ T , then the subsets S and T \ {x}
satisfy (3). This contradicts the choice of S and T . �

Let l be the number of the components of H ′ = G[T ] which are isomorphic
to Kb and let T0 = {x ∈ V (H ′) : dG−S(x) = 0}. Let H be the subgraph
obtained from H ′ − T0 by deleting those l components isomorphic to Kb.

If |V (H)| = 0, then by (3), we deduce

a|S| < b|T0|+ bl + bn

or

|S| <
b(|T0|+ l) + bn

a
.

Clearly, ω(G − S) ≥ |T0| + l ≥ 1. If ω(G − S) > 1, then t(G) ≤ |S|
ω(G−S) <

b(|T0|+l)+bn

a(|T0|+l) ≤ b+bn
a

, which contradicts t(G) ≥ b2−1+bn
a

and b ≥ 2. If ω(G−S) =

1, then |T0|+ l = 1. Hence dG−S(x) = b− 1 or dG−S(x) = 0 for x ∈ V (G) \ S.
Since dG−S(x) + |S| ≥ dG(x) ≥ δ(G) ≥ 2t(G), we have 2t(G) ≤ b − 1 + |S| <

b− 1 + b(n+1)
a

, which contradicts t(G) ≥ b2−1+bn
a

.
Now we consider that |V (H)| > 0. Let H = H1 ∪ H2, where H1 is the

union of components of H which satisfies that dG−S(x) = b−1 for every vertex
x ∈ V (H1) and H2 = H −H1. By Lemma 8, H1 has a maximum independent
set I1 and the covering set C1 = V (H1)− I1 such that

(4) |V (H1)| ≤
b

∑

i=1

(b− i+ 1)|I(i)| −
|I(1)|

2

and

(5) |C1| ≤
b

∑

i=1

(b− i)|I(i)| −
|I(1)|

2
,

where I(i) = {x ∈ I1 : dH1
(x) = b − i}, 1 ≤ i ≤ b and

∑b

i=1 |I
(i)| = |I1|. Let

Tj = {x ∈ V (H2) : dG−S(x) = j} for 1 ≤ j ≤ b − 1. Each component of H2

has a vertex of degree at most b− 2 in G− S by the definitions of H and H2.
According to Lemma 7, H2 has a maximal independent set I2 and the covering
set C2 = V (H2)− I2 such that

(6)
b−1
∑

j=1

(b− j)cj ≤
b−1
∑

j=1

(b− 2)(b − j)ij,
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where cj = |C2 ∩ Tj | and ij = |I2 ∩ Tj | for every j = 1, . . . , b − 1. Set W =
V (G)−S−T and U = S ∪C1 ∪ (NG(I1)∩W ))∪C2 ∪ (NG(I2)∩W ). We infer

(7) |U | ≤ |S|+ |C1|+
b−1
∑

j=1

jij +

b
∑

i=1

(i− 1)|I(i)|

and

(8) ω(G− U) ≥ t0 + l + |I1|+
b−1
∑

j=1

ij ,

where t0 = |T0|. Let t(G) = t. Then when ω(G− S) > 1, we have

(9) |U | ≥ tω(G− S),

and it also holds when ω(G− S) = 1. In terms of (7), (8) and (9), we get

(10) |S|+ |C1| ≥
b−1
∑

j=1

(t− j)ij + t(t0 + l) + t|I1| −
b

∑

i=1

(i− 1)|I(i)|.

In view of b|T | − dG−S(T ) > a|S| − bn, we obtain

bt0 + bl + |V (H1)|+
b−1
∑

j=1

(b− j)ij +
b−1
∑

j=1

(b− j)cj > a|S| − bn.

Combining with (10), we deduce

bt0 + bl + |V (H1)|+
b−1
∑

j=1

(b− j)ij +

b−1
∑

j=1

(b − j)cj + a|C1|+ bn

>

b−1
∑

j=1

(at− aj)ij + at(t0 + l) + at|I1| − a

b
∑

i=1

(i − 1)|I(i)|.

Therefore,

|V (H1)|+
b−1
∑

j=1

(b− j)cj + a|C1|

(11)

>

b−1
∑

j=1

(at− aj − b+ j)ij + (at− b)(t0 + l) + at|I1| − a

b
∑

i=1

(i − 1)|I(i)| − bn.

By (4) and (5), we have

(12) |V (H1)|+ a|C1| ≤
b

∑

i=1

(ab− ai+ b− i+ 1)|I(i)| −
(a+ 1)|I(1)|

2
.
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Using (6), (11) and (12), we get

b−1
∑

j=1

(b − 2)(b− j)ij +

b
∑

i=1

(ab− ai+ b − i+ 1)|I(i)|(13)

>

b−1
∑

j=1

(at− aj − b+ j)ij + at|I1|+
(a+ 1)|I(1)|

2

− a

b
∑

i=1

(i− 1)|I(i)|+ (at− b)(t0 + l)− bn.

The following proof splits into two cases by the value of t0 + l.
Case 1. t0 + l ≥ 1. By at ≥ b2 − 1 + bn, we have (at − b)(t0 + l) − bn ≥

b2 − b− 1 > 0. Thus, (13) becomes

b−1
∑

j=1

(b − 2)(b− j)ij +

b
∑

i=1

(ab− ai+ b− i + 1)|I(i)|

b−1
∑

j=1

(at− aj − b+ j)ij + at|I1|+
(a+ 1)|I(1)|

2
− a

b
∑

i=1

(i− 1)|I(i)|.

And then, at least one of the following two cases must hold.
Subcase 1.1. There is at least one j such that

(b− 2)(b− j) > at− aj − b+ j,

which implies

at < (b − 2)(b− j) + aj + b− j = b(b− 2) + (a− b+ 1)j + b.

If a = b, then at < a(a−2)+ j+a ≤ a2−1, which contradicts t(G) ≥ b2−1+bn
a

.

If a < b, then at < b(b− 2)+ (a− b+1)+ b = b(b− 2)+ a+1 = (b2 − 1)+ (a−

b) + (2 − b) ≤ b2 − 1, also contradicts t(G) ≥ b2−1+bn
a

.
Subcase 1.2.

b
∑

i=1

(ab− ai+ b− i+ 1)|I(i)|

> at|I1|+
(a+ 1)|I(1)|

2
− a

b
∑

i=1

(i − 1)|I(i)|

≥ (b2 − 1 + bn)|I1|+
(a+ 1)|I(1)|

2
− a

b
∑

i=1

(i− 1)|I(i)|

≥ (b2 − 1)|I1|+
(a+ 1)|I(1)|

2
− a

b
∑

i=1

(i− 1)|I(i)|.
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This implies,

b
∑

i=2

(ab+ b− a− i+ 2− b2)|I(i)|+ (ab+ b−
3

2
a− b2 +

1

2
)|I(1)| > 0.

Let

h1(b) = −b2 + (a+ 1)b−
3

2
a+

1

2
.

From b ≥ a, we get

max{h1(b)} = f1(a) = −
a

2
+

1

2
≤ 0.

On the other hand, ab + b − a− i+ 2 − b2 ≤ −b2 + (a + 1)b − a due to i ≥ 2.
Let

h2(b) = −b2 + (a+ 1)b− a.

We infer

max{h2(b)} = f2(a) = 0

by b ≥ a. This is a contradiction.
Case 2. t0 + l = 0. In this case, (13) becomes

b−1
∑

j=1

(b − 2)(b− j)ij +

b
∑

i=1

(ab− ai+ b− i+ 1)|I(i)|

>

b−1
∑

j=1

(at− aj − b+ j)ij + at|I1|+
(a+ 1)|I(1)|

2
− a

b
∑

i=1

(i − 1)|I(i)| − bn.

From what we have discussed in Subcase 1, we get
∑b−1

j=1(b − 2)(b − j)ij ≤
∑b−1

j=1(at− aj − b+ j)ij. If |I1| > 0, we deduce

b
∑

i=1

(ab− ai+ b− i+ 1)|I(i)|

> at|I1|+
(a+ 1)|I(1)|

2
− a

b
∑

i=1

(i− 1)|I(i)| − bn

≥ (b2 − 1 + bn)|I1|+
(a+ 1)|I(1)|

2
− a

b
∑

i=1

(i − 1)|I(i)| − bn

≥ (b2 − 1)|I1|+
(a+ 1)|I(1)|

2
− a

b
∑

i=1

(i − 1)|I(i)|.

The result follows from what we discussed in Subcase 2 above.
The last situation is |I1| = 0 and

∑b−1
j=1(b− 2)(b− j)ij >

∑b−1
j=1(at− aj− b+

j)ij − bn. Let h3 = (b − 2)(b− j)− (at− aj − b+ j) + bn. If a = b, we have

h3 = b2 − b+ j − at+ bn ≤ b2 − b+ (b − 1)− (b2 − 1 + bn) + bn = 0.
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If b ≥ a+ 1, then

h3 = b(b− 2) + (a− b+ 1)j + b− at+ bn

≤ b(b− 2) + (a− b+ 1) + b− (b2 − 1 + bn) + bn

= −2(b− 1) + a < 0,

a contradiction.
We complete the proof of the theorem.

3. Tight toughness condition for fractional (a, b, n)-critical graph

Let g(x) = a, f(x) = b for each x ∈ V (G). The necessary and sufficient
condition for fractional (a, b, n)-critical graph derives from Lemma 3.

Lemma 9. Let G be a graph. Let a, b, n be non-negative integers such that

a ≤ b. Then G is a fractional (a, b, n)-critical graph if and only if

(14) b|S| − a|T |+ dG−S(T ) ≥ bn

for all disjoint subsets S, T of V (G) with |S| ≥ n.

Using standard techniques similar to that of Section 2. Suppose that G is
not a fractional (a, b, n)-critical graph. We infer T 6= ∅, and there exist disjoint
subsets S and T of V (G) such that

(15) b|S| − a|T |+ dG−S(T ) < bn,

where |S| ≥ n. We choose S and T such that |T | is minimum. We obtain
dG−S(x) ≤ a− 1 for each x ∈ T .

Applying Lemma 9, using the tricks used in Section 2, and noticing the
minor differences between (3) and (15), and dG−S(x) ≤ a − 1 for each x ∈ T

here correspond to dG−S(x) ≤ b− 1 for each x ∈ T in Section 2. We finally get
the following tight condition for fractional (a, b, n)-critical graphs. We skip the
proof.

Theorem 10. Let G be a graph and let a, b be two nonnegative integers satis-

fying 2 ≤ a ≤ b. Let n be a non-negative integer. |V (G)| ≥ n + a + 1 if G is

complete. If t(G) ≥ ab−b+a−1
b

+n, then G is a fractional (a, b, n)-critical graph.

To see Theorem 10 is sharp, we construct the following graph G: V (G) =
A ∪ B ∪ C where A, B and C are disjoint with |A| = (mb + 1)(a − 1 + n),
|B| = (mb + 1)(a − 1), and |C| = m(a − 1) with a = b. Both A and C

are cliques in G, while B is isomorphic to (mb + 1)Ka−1. Other edges in G

are {uv;u ∈ B, v ∈ C} and {u1v1, u2v2, . . . , u(mb+1)(a−1)v(mb+1)(a−1)}, where
V (B) = {u1, u2, . . . , u(mb+1)(a−1)} and {v1, v2, . . . , v(mb+1)(a−1)} ⊂ A. If a = 2,
let S = (A−{u})∪C, where u ∈ A, then |S| = (mb+m+ 1)+ n(mb+1) and
ω(G − S) = mb + 1; if a ≥ 3, let S = (A − {u}) ∪ {v} ∪ C, where u ∈ A and
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v ∈ B is matched to u in G. Then |S| = (mb+m+ 1)(a− 1) + n(mb+ 1) and
ω(G− S) = mb+ 2. This follows that

t(G) =

{

(mb+m+1)(a−1)+n(mb+1)
mb+2 , a ≥ 3

(mb+m+1)+n(mb+1)
mb+1 , a = 2.

It is easy to see that t(G) → ab−b+a−1
b

+ n when m → +∞.
Let V0 ⊂ V (A) \ {v1, v2, . . . , v(mb+1)(a−1)} with |V0| = n, S = C ∪ V0 and

T = B. We have dG−S(x) = a− 1 for each x ∈ T , and

b|S| − bn− a|T |+ dG−S(T ) = bm(a− 1)− (mb + 1)(a− 1) < 0.

By Lemma 9, G is not a fractional (a, b, n)-critical graph. In this sense, t(G)
in Theorem 10 is best.

Again, the restriction on |V (G)| for complete graph is necessary and can not
be replaced by |V (G)| ≥ n+ a.
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