• Title/Summary/Keyword: (commutative) ideal

Search Result 210, Processing Time 0.026 seconds

ON (${\sigma},\;{\tau}$)-DERIVATIONS OF PRIME RINGS

  • Kaya K.;Guven E.;Soyturk M.
    • The Pure and Applied Mathematics
    • /
    • v.13 no.3 s.33
    • /
    • pp.189-195
    • /
    • 2006
  • Let R be a prime ring with characteristics not 2 and ${\sigma},\;{\tau},\;{\alpha},\;{\beta}$ be auto-morphisms of R. Suppose that $d_1$ is a (${\sigma},\;{\tau}$)-derivation and $d_2$ is a (${\alpha},\;{\beta}$)-derivation on R such that $d_{2}{\alpha}\;=\;{\alpha}d_2,\;d_2{\beta}\;=\;{\beta}d_2$. In this note it is shown that; (1) If $d_1d_2$(R) = 0 then $d_1$ = 0 or $d_2$ = 0. (2) If [$d_1(R),d_2(R)$] = 0 then R is commutative. (3) If($d_1(R),d_2(R)$) = 0 then R is commutative. (4) If $[d_1(R),d_2(R)]_{\sigma,\tau}$ = 0 then R is commutative.

  • PDF

ON RIGHT REGULARITY OF COMMUTATORS

  • Jung, Da Woon;Lee, Chang Ik;Lee, Yang;Park, Sangwon;Ryu, Sung Ju;Sung, Hyo Jin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.4
    • /
    • pp.853-868
    • /
    • 2022
  • We study the structure of right regular commutators, and call a ring R strongly C-regular if ab - ba ∈ (ab - ba)2R for any a, b ∈ R. We first prove that a noncommutative strongly C-regular domain is a division algebra generated by all commutators; and that a ring (possibly without identity) is strongly C-regular if and only if it is Abelian C-regular (from which we infer that strong C-regularity is left-right symmetric). It is proved that for a strongly C-regular ring R, (i) if R/W(R) is commutative, then R is commutative; and (ii) every prime factor ring of R is either a commutative domain or a noncommutative division ring, where W(R) is the Wedderburn radical of R.

Fuzzy Prime Ideals of Pseudo- ŁBCK-algebras

  • Dymek, Grzegorz;Walendziak, Andrzej
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.1
    • /
    • pp.51-62
    • /
    • 2015
  • Pseudo-ŁBCK-algebras are commutative pseudo-BCK-algebras with relative cancellation property. In the paper, we introduce fuzzy prime ideals in pseudo-ŁBCK-algebras and investigate some of their properties. We also give various characterizations of prime ideals and fuzzy prime ideals. Moreover, we present conditions for a pseudo-ŁBCKalgebra to be a pseudo-ŁBCK-chain.

SOME RESULTS ON PP AND PF-MODULES

  • KHAKSARI, AHMAD
    • Honam Mathematical Journal
    • /
    • v.28 no.3
    • /
    • pp.377-386
    • /
    • 2006
  • For a commutative ring with unity R, it is proved that R is a PF-ring if and only if the annihilator, $ann_R(a)$, for each $a{\in}R$ is a pure ideal in R. Also it is proved that the polynomial ring, R[x], is a PF-ring if and only if R is a PF-ring. Finally, we prove that M as an R-module is PF-module if and only if M[x] is a PF R[x]-module. Also M is a PP R-module if and only if M[x] is a PP R[x]-module.

  • PDF

SMARANDACHE d-ALGEBRAS

  • Kim, Young Hee;Kim, Young Hie;Ahn, Sun Shin
    • Honam Mathematical Journal
    • /
    • v.40 no.3
    • /
    • pp.539-548
    • /
    • 2018
  • The notions of Smarandache (positive implicative, commutative, implicative) d-algebras, Smarandache subalgebras of Smarandache d-algebras and Smarandache BCK-ideals(d-ideals) of a Smarandache d-algebras are introduced. Examples are given, and several related properties are investigated.

ON THE STRUCTURE OF A k-ANNIHILATING IDEAL HYPERGRAPH OF COMMUTATIVE RINGS

  • Shaymaa S. Essa;Husam Q. Mohammad
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.55-67
    • /
    • 2023
  • In this paper we obtain a new structure of a k-annihilating ideal hypergraph of a reduced ring R, by determine the order and size of a hypergraph 𝒜𝒢k(R). Also we describe and count the degree of every nontrivial ideal of a ring R containing in vertex set 𝒜(R, k) of a hypergraph 𝒜𝒢k(R). Furthermore, we prove the diameter of 𝒜𝒢k(R) must be less than or equal to 2. Finally, we determine the minimal dominating set of a k-annihilating ideal hypergraph of a ring R.

RADICALLY PRINCIPAL IDEAL RINGS

  • Gyu Whan Chang;Sangmin Chun
    • The Pure and Applied Mathematics
    • /
    • v.30 no.4
    • /
    • pp.397-406
    • /
    • 2023
  • Let R be a commutative ring with identity, X be an indeterminate over R, and R[X] be the polynomial ring over R. In this paper, we study when R[X] is a radically principal ideal ring. We also study the t-operation analog of a radically principal ideal domain, which is said to be t-compactly packed. Among them, we show that if R is an integrally closed domain, then R[X] is t-compactly packed if and only if R is t-compactly packed and every prime ideal Q of R[X] with Q ∩ R = (0) is radically principal.

SOME RESULTS OF MONOMIAL IDEALS ON REGULAR SEQUENCES

  • Naghipour, Reza;Vosughian, Somayeh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.711-720
    • /
    • 2021
  • Let R denote a commutative noetherian ring, and let 𝐱 := x1, …, xd be an R-regular sequence. Suppose that 𝖆 denotes a monomial ideal with respect to 𝐱. The first purpose of this article is to show that 𝖆 is irreducible if and only if 𝖆 is a generalized-parametric ideal. Next, it is shown that, for any integer n ≥ 1, (x1, …, xd)n = ⋂P(f), where the intersection (irredundant) is taken over all monomials f = xe11 ⋯ xedd such that deg(f) = n - 1 and P(f) := (xe1+11, ⋯, xed+1d). The second main result of this paper shows that if 𝖖 := (𝐱) is a prime ideal of R which is contained in the Jacobson radical of R and R is 𝖖-adically complete, then 𝖆 is a parameter ideal if and only if 𝖆 is a monomial irreducible ideal and Rad(𝖆) = 𝖖. In addition, if a is generated by monomials m1, …, mr, then Rad(𝖆), the radical of a, is also monomial and Rad(𝖆) = (ω1, …, ωr), where ωi = rad(mi) for all i = 1, …, r.

NOTES ON THE REGULAR MODULES

  • Mohajer, Keivan;Yassemi, Siamak
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.693-699
    • /
    • 1999
  • It is a well-known result that a commutative ring R is von Neumann regular if and only if for any maximal ideal m of R the R-module R/m is flat. In this note we bring a generalization of this result for modules.

  • PDF