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RADICALLY PRINCIPAL IDEAL RINGS

Gyu Whan Chang a and Sangmin Chun b, ∗

Abstract. Let R be a commutative ring with identity, X be an indeterminate over
R, and R[X] be the polynomial ring over R. In this paper, we study when R[X] is
a radically principal ideal ring. We also study the t-operation analog of a radically
principal ideal domain, which is said to be t-compactly packed. Among them, we
show that if R is an integrally closed domain, then R[X] is t-compactly packed if and
only if R is t-compactly packed and every prime ideal Q of R[X] with Q ∩R = (0)
is radically principal.

1. Introduction

All rings considered in this paper are commutative rings with identity. Let R be
a ring, Spec(R) be the set of prime ideals of R, X be an indeterminate, and R[X]
be the polynomial ring over R. An ideal I of R is said to be radically principal if√

I =
√

aR for some a ∈ R.
In [19, Theorem 1.1], Reis and Viswanathan showed that if R is a Noetherian

ring, then every prime ideal of R is radically principal if and only if R is compactly
packed, i.e., if an ideal I of R is contained in

⋃
α∈A Pα, where {Pα | α ∈ A} ⊆

Spec(R), then I ⊆ Pα for some α ∈ A. Then, in [20, Theorem], Smith completely
generalized the result of [19, Theorem 1.1] to an arbitrary ring, i.e., he proved that R

is compactly packed if and only if every prime ideal of R is radically principal. In [18],
Oda studied Krull domains and Noetherian domains whose height-one prime ideals
are radically principal. Oda also called an integral domain R a radically principal
ideal domain (radically PID) if every nonzero ideal of R is radically principal. More
generally, in [4], the authors called R a radically principal ring if every ideal of R

is radically principal. Among other things, the authors of [4] showed that R is a
radically principal ring if and only if every prime ideal of R is radically principal [4,
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Theorem 2.7], whence the radically principal ring is just the compactly packed ring
by [20, Theorem]. They also showed that R[X] is a radically principal ring if and
only if R is a zero-dimensional radically principal ring [4, Theorem 4.3].

Let t be the so-called t-operation on an integral domain D. (The t-operation
will be reviewed in the sequel.) In [7], the authors studied an integral domain whose
prime t-ideals are radically principal. Among them, they showed that D is compactly
packed if and only if every prime t-ideal of D is radically principal and every nonzero
prime ideal of D is a t-ideal [7, Proposition 3.1]. In [5, 17], the authors also studied
several types of integral domains in which every prime t-ideal is radically principal
under the name of t-compactly packed.

A ring R is called a principal ideal ring (PIR) if each proper ideal of R is principal.
Following [18] and [4], we will say that R is a radically principal ideal ring (radically
PIR) if each ideal of R is radically principal. Hence, a PIR is a radically PIR, while
a radically PIR need not be a PIR (for example, every finite-dimensional valuation
domain is radically principal). In this paper, we study when R[X] is a radically
PIR. In Section 2, among them, we show that R[X] is a radically PIR if and only if
every maximal ideal of R[X] is radically principal. An integral domain R is said to
be t-compactly packed if every prime t-ideal of R is radically principal. In Section 3,
we give a partial answer to the question of when R[X] is t-compactly packed for an
integral domain R. For example, we show that if R is an integrally closed domain,
then R[X] is t-compactly packed if and only if R is t-compactly packed and every
prime ideal Q of R[X] with Q ∩ R = (0) is radically principal. As a corollary, we
have that a Krull domain R is t-compactly packed if and only if R[X] is t-compactly
packed.

2. Radically Principal Ideal Rings

Let R be a ring, X be an indeterminate over R, and R[X] be the polynomial ring
over R. It is well-known and easy to see that R is a PIR if and only if every prime
ideal of R is principal. This is true of a radically PIR. That is, R is a radically PIR
if and only if every prime ideal of R is radically principal [4, Theorem 2.7]. We first
give a simple proof of [4, Theorem 2.7] for easy reference of the reader.

Lemma 1. A ring R is a radically PIR if and only if every prime ideal of R is
radically principal.
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Proof. (⇒) Clear. (⇐) Let I be an ideal of R. If every ideal of R is radically
principal, then there are only finitely many minimal prime ideals of I [13, Theorem
1.6], say, P1, . . . , Pn. Hence, if Pi =

√
aiR for some ai ∈ R, then

√
I = P1∩· · ·∩Pn =√

a1R ∩ · · · ∩ √anR =
√

a1 · · · anR. Thus, I is radically principal. ¤

It is clear that if M is a maximal ideal of R[X], then (i) (M ∩ R)[X] ( M and
(ii) if M is principal, then M ∩ R is a minimal prime ideal of R [1, Theorem 9].
Recently, we generalized this result to a radically principal ideal of R[X].

Lemma 2. Let R be a ring, R[X] be the polynomial ring over R, and Q be a prime
ideal of R[X] such that (Q ∩ R)[X] ( Q. If Q is a radically principal ideal, then
Q ∩R is a minimal prime ideal of R and htQ = 1.

Proof. [6, Proposition 3]. ¤

The next result is a complete characterization of when R[X] is a radically PIR.

Proposition 3. The following statements are equivalent for a ring R.

(1) R is a zero-dimensional radically PIR.
(2) R is a finite direct sum of zero dimensional local rings.
(3) R[X] is a radically PIR.
(4) Every maximal ideal of R[X] is radically principal.
(5) R has the following property: If a prime ideal P of R is contained in⋃

α∈A Pα, where {Pα | α ∈ A} ⊆ Spec(R), then P = Pα for some α ∈ A.

Proof. (1) ⇔ (2) ⇔ (3) See [4, Theorem 4.3].
(3) ⇒ (4) Clear.
(4) ⇒ (1) Let P be a prime ideal of R. Then there is a maximal ideal M of R[X]

such that P [X] ⊆ M , so P ⊆ M ∩ R. Hence, by Lemma 2, P = M ∩ R and P

is minimimal. Thus, R is zero-dimensional. Moreover, P [X] =
√

fR[X] for some
f ∈ R[X]. It is clear that if a is the constant term of f , then P [X] =

√
aR[X], and

hence P =
√

aR. Thus, R is a zero-dimensional radically PIR.
(1) ⇔ (5) [7, Proposition 2.2]. ¤

The following corollary is a special case of Proposition 3, which gives an answer
to when the polynomial ring D[X] over an integral domain D is a radically PIR.

Corollary 4. The following statements are equivalent for an integral domain D.

(1) D is a field.
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(2) D[X] is a PID.
(3) D[X] is a radically PIR.
(4) Every maximal ideal of D[X] is principal.
(5) Every maximal ideal of D[X] is radically principal.

Proof. (1) ⇔ (2) ⇒ (4) ⇒ (5) Clear.
(5) ⇒ (3) This follows from Proposition 3.
(3) ⇒ (2) [4, Corollary 4.2]. ¤

A PIR is a special primary ring (SPR) if it has exactly one prime ideal. We say
that R is a unique factorization ring (UFR) if each nonunit element of R can be
written as a finite product of prime elements [11, Theorem 4].

Lemma 5. A ring R is a PIR if and only if R is a UFR and a radically PIR.

Proof. This follows from the following observation: (i) R is a PIR (resp., UFR) if
and only if R is a finite direct sum of PIDs (resp., UFDs) [22, Theorem 33, page 245]
(resp., [10, Theorem 19]); (ii) if R is a finite direct sum of rings, then R is a radically
PIR if and only if each direct summand of R is a radically PIR [4, Corollary 2.10],
and (iii) a UFD D is a radically PIR if and only if each nonzero prime ideal of D is
a maximal ideal, if and only if dimD ≤ 1, if and only if D is a PID. ¤

The polynomial ring D[X] over an integral domain D is a PID if and only if D is
a field. Hence, the following result is a simple corollary of an already known result
on UFRs [2, Theorem 2.7(1)] that R[X] is a UFR if and only if R is a finite direct
sum of UFDs. This result was also proved by Chimal-Dzul and López-Andrade [9,
Theorem 2.3] in a different way.

Corollary 6. Let R[X] be the polynomial ring over a ring R. Then R[X] is a PIR
if and only if R is a finite direct sum of fields.

Proof. Suppose that R[X] is a PIR. Then R[X] is a UFR, and hence R is a finite
direct sum of UFDs [2, Theorem 2.7(1)], say, R = D1 ⊕ · · · ⊕ Dn for some UFDs
D1, . . . , Dn. Also, by Lemma 5 and Proposition 3, R is a zero-dimensional radically
PIR. Hence, dimDi = 0, and thus Di is a field for i = 1, . . . , n. Thus, R is a finite
direct sum of fields. The converse is clear. ¤

Let V be a rank-one nondiscrete valuation domain with maximal ideal M . Then
M is radically principal but not principal. We use the result of this section to give
another example of maximal ideals that are radically principal but not principal.
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Example 7. Let R be an SPR with maximal ideal P , and assume that R is not a
field. Then R is a zero-dimensional radically PIR, and hence R[X] is a radically PIR
by Proposition 3. In particular, each maximal ideal of R[X] is radically principal.
However, R[X] is not a PIR by Corollary 6. Note that P [X] is a unique non-maximal
prime ideal of R[X] and P [X] is principal. Hence, R[X] has a maximal ideal that is
not principal.

Let D be an integral domain. It is easy to see that if P is a nonzero prime ideal
of D that is radically principal, then P is minimal over a nonzero principal ideal. A
nonzero principal ideal is a so-called t-ideal, and hence P is also a t-ideal. We end
this section by recalling the notion of t-operation for the study of radically principal
ideals of an integral domain in the next section.

Let K be the quotient field of D. A D-submodule A of K is said to be a fractional
ideal of D if dA ⊆ D for some 0 6= d ∈ D. For a nonzero fractional ideal A of D,
let A−1 = {x ∈ K | xA ⊆ D}, then A−1 is also a nonzero fractional ideal of D.
Hence, Av = (A−1)−1 and At =

⋃{Jv | J ⊆ A and J is a nonzero finitely generated
fractional ideal of D} are well-defined. An ideal A of D is a t-ideal if At = A. A
prime t-ideal is a prime ideal that is also a t-ideal. A maximal t-ideal is a t-ideal
that is maximal among all proper integral t-ideals under inclusion. It is known that
a maximal t-ideal is a prime ideal and if

√
aD for a ∈ D is a maximal t-ideal, then

a is primary (cf. the proof of [3, Theorem 2.4]), i.e., aD is a primary ideal. Let t-
Spec(D) be the set of prime t-ideals of D. It is well known that a nonzero principal
ideal is a t-ideal and a prime ideal that is minimal over a t-ideal is a t-ideal, so
t-Spec(D) = ∅ if and only if D is a field.

3. t-Compactly Packed Domains

In this section, we study the t-operation analog of radically PIDs. Let D be an
integral domain. An integral t-ideal I of D is said to be t-compactly packed if for
any set Λ of prime t-ideals of D with I ⊆ ⋃

Q∈Λ Q, one has I ⊆ P for some P ∈ Λ.
A class A of integral t-ideals of D is said to be t-compactly packed if every element
of A is t-compactly packed. Finally, D is said to be t-compactly packed if every
integral t-ideal of D is t-compactly packed. The equivalence of (1) and (4) in the
next proposition was noted in [5, Definition 2.1].

Proposition 8. Let D be an integral domain and t-Spec(D) be the set of prime
t-ideals of D. Then the following statements are equivalent.
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(1) D is t-compactly packed.
(2) t-Spec(D) is t-compactly packed.
(3) Every prime t-ideal of D is radically principal.
(4) Every integral t-ideal of D is radically principal.

Proof. (1) ⇔ (2) [17, Theorem 2.1].
(2) ⇔ (3) [7, Proposition 3.1].
(3) ⇒ (4) Let I be an integral t-ideal of D. Then every minimal prime ideal P

of I is a t-ideal, and hence P =
√

aD for some a ∈ D. Hence, I has finitely many
minimal prime ideals of D [13, Theorem 1.6], say, P1, . . . , Pn, and Pi =

√
aiD for

some ai ∈ D. Thus,
√

I = P1 ∩ · · · ∩ Pn =
√

a1D ∩ · · · ∩
√

anD =
√

a1 · · · anD.

Therefore, I is radically principal.
(4) ⇒ (3) Clear. ¤

A nonzero prime ideal Q of D[X] is called an upper to zero in D[X] if Q∩D = (0).
It is useful to note that every upper to zero in D[X] is a prime t-ideal, because it
is minimal over a nonzero principal ideal. The next result is a special case of [5,
Corollary 3.3] in which the authors studied when D[X] is t-compactly packed.

Proposition 9. Let D be an integrally closed domain. Then D[X] is t-compactly
packed if and only if D is t-compactly packed and every upper to zero in D[X] is
radically principal.

Proof. (⇒) Let P be a prime t-ideal of D. Then P [X] is a prime t-ideal of D[X] [16,
Corollary 2.3], so P [X] is radically principal by assumption, whence P is radically
principal. Thus, D is t-compactly packed. Next, let Q be an upper to zero in D[X].
Then Q is a prime t-ideal of D[X], so Q is radically principal by assumption.

(⇐) Let Q be a prime t-ideal of D[X]. Then either Q ∩D = (0) or Q ∩D 6= (0)
and Q = (Q ∩ D)[X] [14, Lemma 4.5] because D is integrally closed. Hence, if
Q ∩ D = (0), then Q is radically principal by assumption. Next, assume that
Q ∩D 6= (0) and Q = (Q ∩D)[X]. Then Q = Qt = (Q ∩D)t[X] [16, Corollary 2.3],
so (Q ∩D)t = Q ∩D, and hence Q ∩D is radically principal by assumption. Thus,
Q = (Q ∩D)[X] is radically principal. ¤

We next give a partial answer to the question of when a prime ideal of D[X] is
radically principal. We first recall that an integral domain D is an almost GCD-
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domain (AGCD-domain) if for any 0 6= a, b ∈ D, there is a positive integer n =
n(a, b) such that anD ∩ bnD is principal. Clearly, a GCD domain is an AGCD-
domain. For more on AGCD-domains, see [21].

Proposition 10. Let D be an integrally closed AGCD domain and Q be a nonzero
prime ideal of D[X]. Then Q is radically principal if and only if Q satisfies one of
the following conditions:

(1) Q ∩D = (0).
(2) Q ∩D 6= (0), Q = (Q ∩D)[X], and Q ∩D is radically principal.

Proof. (⇒) Suppose that Q =
√

fD[X] for some f ∈ D[X]. Then Q is minimal over
fD[X], so Q is a prime t-ideal of D[X]. Hence, either Q ∩D = (0) or Q ∩D 6= (0)
and Q = (Q∩D)[X] [14, Lemma 4.5]. In particular, if Q = (Q∩D)[X], then f ∈ D,
and thus Q ∩D =

√
fD.

(⇐) If Q ∩D = (0), then Q contains a primary element [3, Corollary 2.5]. Note
that Q is a nonzero minimal prime ideal of D[X], so if f ∈ Q is a primary element,
then Q =

√
fD[X]. Next, assume that Q = (Q ∩ D)[X] and Q ∩ D is radically

principal. Then Q ∩D =
√

aD for some a ∈ D, and hence (Q ∩D)[X] =
√

aD[X].
Thus, Q is radically principal. ¤

An integral domain D is a Prüfer v-multiplication domain (PvMD) if each nonzero
finitely generated ideal I of D is t-invertible, i.e., (II−1)t = D. Let T (D) be the
abelian group of t-invertible fractional t-ideals of D under I ∗J = (IJ)t and P (D) be
its subgroup of nonzero principal fractional ideals. The t-class group of D is defined
by the factor group Cl(D) := T (D)/P (D) of T (D) modulo P (D). It is known that
D is an integrally closed AGCD domain if and only if D is a PvMD with Cl(D)
torsion [21, Theorem 3.9], i.e., if I is a nonzero finitely generated ideal, then (In)t

is principal for some integer n ≥ 1.

Corollary 11. [8, Corollary 1.2] Let D be a PvMD. Then D[X] is t-compactly
packed if and only if D is a t-compactly packed AGCD domain.

Proof. (⇒) Let Q be an upper to zero in D[X]. Then Q =
√

fD[X] for some
f ∈ D[X], and since D is a PvMD, Q is a maximal t-ideal [15, Proposition 3.2],
so fR[X] is a primary ideal of D[X]. Thus, each upper to zero in D[X] contains
a primary element, and hence D is an AGCD domain [3, Corollary 2.3]. (⇐) A
PvMD is integrally closed, so D is an integrally closed AGCD domain, and hence
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every upper to zero in D[X] is radically principal by Proposition 10. Thus, the
result follows from Proposition 9. ¤

An integral domain D is a Krull domain if every nonzero ideal of D is t-invertible
[14, Theorem 2.3]. A Krull domain D is called an almost factorial domain if Cl(D)
is torsion [12].

Corollary 12. The following statements are equivalent for a Krull domain D.

(1) D is an almost factorial domain.
(2) D is t-compactly packed.
(3) D[X] is t-compactly packed.

Proof. (1) ⇔ (2) See [18, Proposition 7] or [5, Proposition 3.1].
(2) ⇒ (3) A Krull domain is a PvMD, so a Krull domain is an AGCD domain

if and only if it is an almost factorial domain. Hence, if D is t-compactly packed,
then D is a t-compactly packed AGCD domain by the equivalence of (1) and (2),
and hence D[X] is t-compactly packed by Corollary 11.

(3) ⇒ (2) A Krull domain is integrally closed, so if D[X] is t-compactly packed,
then D is t-compactly packed by Proposition 9. ¤
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9. H. Chimal-Dzul & C.A. López-Andrade: When is R[x] a principal ideal ring ?. Rev. In-
tegr. Temas Mat. 35 (2017), 143-148. https://dx.doi.org/10.18273/revint.v35n2
-2017001

10. C.R. Fletcher: The structure of unique factorization rings. Proc. Cambridge Philos.
Soc. 67 (1970), 535-540. https://doi.org/10.1017/S0305004100045825

11. : Equivalent conditions for unique factorization. Publ. Dép. Math. (Lyon) 8
(1971), 13-22.

12. R. Fossum: The Divisor Class Group of a Krull Domain. Springer-Verlag, New York/
Berlin, 1973.

13. R. Gilmer & W. Heinzer: Primary ideals with finitely generated radical in a com-
mutative ring. Manuscripta Math. 78 (1993), 201-221. https://doi.org/10.1007/

BF02599309

14. E. Houston & M. Zafrullah: Integral domains in which each t-ideal is divisorial. Michi-
gan Math. J. 35 (1988), 291-300. https://doi.org/10.1307/mmj/1029003756

15. : On t-invertibility II. Comm. Algebra 17 (1989), 1955-1969. https://doi.org/
10.1080/00927878908823829
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