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SOME RESULTS OF MONOMIAL IDEALS ON

REGULAR SEQUENCES

Reza Naghipour and Somayeh Vosughian

Abstract. Let R denote a commutative noetherian ring, and let x :=

x1, . . . , xd be an R-regular sequence. Suppose that a denotes a monomial
ideal with respect to x. The first purpose of this article is to show that

a is irreducible if and only if a is a generalized-parametric ideal. Next,

it is shown that, for any integer n ≥ 1, (x1, . . . , xd)n =
⋂

P(f), where
the intersection (irredundant) is taken over all monomials f = xe1

1 · · ·xed
d

such that deg(f) = n − 1 and P(f) := (xe1+1
1 , . . . , x

ed+1
d ). The second

main result of this paper shows that if q := (x) is a prime ideal of R which

is contained in the Jacobson radical of R and R is q-adically complete,

then a is a parameter ideal if and only if a is a monomial irreducible ideal
and Rad(a) = q. In addition, if a is generated by monomials m1, . . . ,mr,

then Rad(a), the radical of a, is also monomial and Rad(a) = (ω1, . . . , ωr),

where ωi = rad(mi) for all i = 1, . . . , r.

1. Introduction

LetR be a commutative noetherian ring with the identity element 1R, and let
x := x1, . . . , xd be an R-regular sequence. A monomial with respect to x is
a power product xe11 · · ·x

ed
d , where e1, . . . , ed are non-negative integers (so a

monomial is either a non-unit or the element 1R), and a monomial ideal is a
proper ideal generated by monomials. Monomial ideals are important in several
areas of current research in commutative algebra and algebraic geometry, and
they have been studied in their own right in several papers (for example see
[2, 3, 6, 8, 9]), so many interesting results are proved about such ideals. A
monomial ideal a is called a monomial irreducible ideal if it cannot be written
as proper intersection of two other monomial ideals. Suppose that s is an
integer with 1 ≤ s ≤ d, and let σ be a permutation of {1, . . . , d} and let
e1, . . . , es be non-negative integers. If f = xe1σ(1) . . . x

es
σ(s) is a monomial with
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712 R. NAGHIPOUR AND S. VOSUGHIAN

respect to x, then the monomial ideal P(f) := (xe1+1
σ(1) , . . . , x

es+1
σ(s) ) is called a

generalized-parametric ideal with respect to x. In particular, an ideal of the
form (xa11 , . . . , x

ad
d ) is called a parameter ideal, where a1, . . . , ad are positive

integers.
The first observation of this paper is concerned with what might be con-

sidered a natural generalization of the Herzog-Hibi’s result (see [5, Corollary
1.3.2]) for monomial ideals a with respect to an R-regular sequence. More
precisely, we shall show that:

Theorem 1.1. Let R denote a noetherian ring, let x := x1, . . . , xd be an R-
regular sequence and let a be a non-zero monomial ideal of R with respect to
x. Then a is a monomial irreducible ideal if and only if a is a generalized-
parametric ideal.

The result of Theorem 1.1 is proved in Theorem 2.3. Pursuing this point of
view further we derive the following consequence of Theorem 1.1.

Corollary 1.2. Let R denote a noetherian ring and let x := x1, . . . , xd be an
R-regular sequence contained in the Jacobson radical of R such that the ideal
q := (x) is prime and R is q-adically complete. Then, for any monomial ideal
a of R with respect to x, the following conditions are equivalent:

(i) a is a parameter ideal.
(ii) a is monomial irreducible and Rad(a) = q.
(iii) a has a decomposition of parameter ideals.

One of our tools for proving Corollary 1.2 is the following.

Proposition 1.3. Let R denote a noetherian ring and let x := x1, . . . , xd be
an R-regular sequence contained in the Jacobson radical of R such that the
ideal q := (x) is prime and R is q-adically complete. Suppose that a is a
monomial ideal of R generated by the monomials m1, . . . ,mr. Then Rad(a)
is also monomial and that Rad(a) = (ω1, . . . , ωr), where ωi = rad(mi), for all
i = 1, . . . , r.

Another main result of this paper is to construct an irredundant generalized-
parametric decomposition for ideal (x1, . . . , xd)

n for all integers n ≥ 1. In fact,
we shall show the following result which is identical with [4, Theorem 2.4] by
a different proof.

Theorem 1.4. Let R denote a noetherian ring and let x := x1, . . . , xd be an
R-regular sequence. Put b := (x1, . . . , xd). Then, for any integer n ≥ 1, we
have

bn =
⋂

deg(f)=n−1

P(f),

where the intersection is taken over all monomials f with respect to x such that
deg(f) = n− 1. Moreover, this intersection is irredundant.
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Throughout this paper all rings are commutative and noetherian, with iden-
tity, unless otherwise specified. We shall use R to denote such a ring and
a an ideal of R. The radical of a, denoted by Rad(a), is defined to be the
set {x ∈ R : xn ∈ a for some n ∈ N}. We say that x1, . . . , xd form an
R-regular sequence (of elements of R) precisely when (x1, . . . , xd) 6= R and
for each i = 1, . . . , d, the element xi is a non-zero divisor on the R-module
R/(x1, . . . , xi−1). For any unexplained notation and terminology we refer the
reader to [1] or [7].

2. The results

The following proposition will be one of main tools in this paper. Before we
state it, let us firstly recall some important notions on monomials. To this end,
assume that q := (x) and let grq(R) := ⊕n≥0qn/qn+1 denote the associated
graded ring with respect to q. For every non-zero element ω of R with ω 6∈⋂
n≥0 q

n, we define the order ord(ω) of ω to be the largest integer t such that ω ∈
qt. Also, we define the initial form of ω as In(ω) := ω + qt+1 ∈ ⊕n≥0qn/qn+1.
Then In(ω) is a homogeneous non-zero polynomial of degree t = ord(ω); and so
there exist uniquely determined and pairwise distinct monomials m1, . . . ,mr

having degree ord(ω) and elements c1, . . . , cr ∈ R \ q such that

In(ω) = In(c1m1 + · · ·+ crmr),

so we define the set of terms of ω by Tm(ω) := {m1, . . . ,mr}.

Definition. Let R be a ring and let x := x1, . . . , xd be an R-regular sequence.
Then

(i) A monomial with respect to x is a power product xe11 . . . xedd , where
e1, . . . , ed are non-negative integers, and a monomial ideal is a proper ideal
generated by monomials.

(ii) A parameter ideal with respect to x is an ideal of the form (xa11 , . . . , x
ad
d ),

where a1, . . . , ad are positive integers.
(iii) If m = xe11 · · ·x

ed
d is a monomial with respect to x, then we let P(m)

denote the parameter ideal (xe1+1
1 , . . . , xed+1

d ). Note that, if m = 1, then
P(m) = (x).

(iv) For every d-tuple i := (i1, . . . , id) ∈ Nd0, we define deg(i) := i1 + · · ·+ id,

the degree of i, and we write xi := xi11 · · ·x
id
d . Since x is an R-regular sequence,

it is easy to see that, for i, j ∈ Nd0, xi = xj if and only if i = j.
(v) If m = xi is a monomial with respect to x, then i is determined uniquely

by m. We call deg(m) := deg(i) the degree of m.
Note that if xi ∈ (xj), then it is easy to see that i1 ≥ j1, . . . , id ≥ jd and

xi = xj.xi−j.
(vi) If f = xe11 · · ·x

ed
d is a monomial with respect to x, then the support of

f , denoted by supp(f), is defined to be the set {j | j ∈ {1, . . . , d} and ej 6= 0}.
Also, the radical of f , denoted by rad(f), is defined by rad(f) := Πj∈supp(f)xj .
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The following proposition which plays a key role in the proof of the main
theorems, shows that if x := x1, . . . , xd is an R-regular sequence contained in
the Jacobson radical of R such that the ideal (x) is prime, then the radical of
a monomial ideal is again a monomial ideal.

Proposition 2.1. Let R be a noetherian ring and let x := x1, . . . , xd be an R-
regular sequence contained in the Jacobson radical of R such that the ideal q :=
(x) is prime. Suppose that R is complete with respect to the q-adic topology, and
let a be a monomial ideal with respect to x. Then Rad(a) is also a monomial
ideal with respect to x.

Proof. In view of [6, Proposition 3], it is enough to show that, for every
w ∈ Rad(a) with w 6= 0, we have Tm(w) ⊆ Rad(a). To do this, since q is
a prime ideal contained in the Jacobson radical of R, it follows from [6, Propo-
sition 2] that w admits a monomial representation (with respect to x), i.e.,
there exist elements e1, . . . , es ∈ R\q such that w = e1m1 + · · ·+ esms, where
m1, . . . ,ms are distinct non-zero monomials having the same degree ord(w); so
that Tm(w) = {m1, . . . ,ms}. Now, we show that m1, . . . ,ms ∈ Rad(a).

We use induction on s. Consider the case in which s = 1. Then as w ∈
Rad(a), there exists an integer k ≥ 1 such that wk ∈ a. Hence, in view of
[6, Proposition 3], Tm(wk) ⊆ a. That is {mk

1} ⊆ a, and so mk
1 ∈ a. Thus

m1 ∈ Rad(a), as required. Suppose now that s > 1 and that the result has
been proved for all non-zero monomials w′ of R with |(Tm(w′))| ≤ s− 1. Set

M := {mα1
1 mα2

2 · · ·mαs
s | 0 ≤ αi ∈ Z, and Σsi=1αi = k}.

Then it is clear that Tm(wk) ⊆ M. Next, we claim that there exists j ∈
{1, . . . , s} such that the monomial mk

j cannot cancel against other elements of
M. To do this end, for all i ∈ {1, . . . , s}, let us consider

mi = xβi1

1 · · ·x
βid

d := xβi ,

where βi = (βi1, . . . , βid) ∈ Nd0 and
∑d
j=1 βij = ord(w). Since the convex hull of

the finite set {β1, . . . , βs} of Rd is a convex polytope, without loss of generality
we may assume that β1 is not in the convex hull of the set {β2, . . . , βs}. Now,
in order to establish the claim, let us suppose, on the contrary, that

mk
1 = (xβ1)k = mk1

1 m
k2
2 · · ·mks

s = (xβ1)k1(xβ2)k2 · · · (xβs)ks ,

where k1 + k2 + · · ·+ ks = k and k1 < k. Then we have

(k − k1)β1 = k2β2 + · · ·+ ksβs,

and so β1 =
∑s
j=2(kj/k − k1)βj . As

∑s
j=2(kj/k − k1) = 1, we obtain a con-

tradiction with the choice of β1. Therefore we have mk
1 ∈ Tm(wk), and hence

it follows from Tm(wk) ⊆ a that mk
1 ∈ a; so that m1 ∈ Rad(a). Conse-

quently we have w′ := w − e1m1 ∈ Rad(a). Since |(Tm(w′))| ≤ s − 1, we can
now use the inductive hypothesis in order to see Tm(w′) ⊆ Rad(a); so that
m2, . . . ,ms ∈ Rad(a). This completes the inductive step, and the proof. �
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We are now ready to state and prove the first main result of this paper
which shows that the radical of a monomial ideal with respect to an R-regular
sequence x := x1, . . . , xd can be computed explicitly. Recall that for a mono-
mial f = xe11 · · ·x

ed
d with respect to x, the radical of f is rad(f) := Πj∈supp(f)xj ,

where supp(f) = {j | j ∈ {1, . . . , d} and ej 6= 0}.

Theorem 2.2. Let R be a noetherian ring and let x := x1, . . . , xd be an R-
regular sequence contained in the Jacobson radical of R such that the ideal q :=
(x) is prime. Suppose that R is complete with respect to the q-adic topology,
and let a = (m1, . . . ,mr) be a monomial ideal with respect to x. Then

Rad(a) = (ω1, . . . , ωr),

where ωi = rad(mi) for all i = 1, . . . , r.

Proof. It is easy to see that ωi = rad(mi) ∈ Rad(a) for all i = 1, . . . , r. Hence

(ω1, . . . , ωr) ⊆ Rad(a).

Now, in order to show the opposite inclusion let us put

b := (ω1, . . . , ωr).

Then, since in view of Proposition 2.1, Rad(a) is a monomial ideal, it is enough
for us to show that for each monomial u ∈ Rad(a) we have u ∈ b. To this
end, there exists an integer k ≥ 1 such that uk ∈ a. Hence, it follows from
[6, Corollary 3] that mi | uk for some i = 1, . . . , r. Now, let u = xc1s1 · · ·x

ct
st

and mj = xa1k1 · · ·x
an
kn

. Then uk = xkc1s1 · · ·x
kct
t . As mj | uk, it follows from

[6, Remark 1] that there is a monomial w such that uk = wmj . Now, it is easy
to see that rad(mj) | u, and so u ∈ b, as required. �

The next main result of this paper is a generalization of [5, Corollary 1.3.2].
For a monomial ideal a with respect to x, of a noetherian ring R, we say that
the monomials f1, . . . , fk are an irredundant monomial generating sequence for
a if fi is not a monomial multiple of fj , whenever i 6= j, for all i, j ∈ {1, . . . , k}.
Recall that if u = xi11 . . . x

id
d and v = xj11 . . . xjdd be two monomials with respect

to x, then the least common multiple of u and v is defined by lcm(u, v) :=

xk11 . . . xkdd , where kr := max{ir, jr} for 1 ≤ r ≤ d.

Theorem 2.3. Let R be a noetherian ring, let x := x1, . . . , xd be an R-regular
sequence and let a be a non-zero monomial ideal of R with respect to x. Then
a is a monomial irreducible ideal if and only if a is a generalized-parametric
ideal.

Proof. (⇒) Let a be a non-zero monomial irreducible ideal with respect to x.
Then in view of [6, Remark 3] a admits an irredundant monomial generating
sequence f1, . . . , fk. It is sufficient for us to show that every fi is of the form
xeiti . Suppose by way of contradiction that one of the fi is not of this form.
After an appropriate reordering of the fj if necessary we may assume that f1
is not of the form xeiti . This means that we can write f1 = xeiti g, where ei ≥ 1
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and g is not divisible by xti , and that g 6= 1 is a monomial with respect to x.
Now, we set

b := (xeiti , f2, . . . , fk) and c := (g, f2, . . . , fk).

Then, in view of [6, Proposition 1], we have

b ∩ c = (lcm(xeiti , g)) + (lcm(xeiti , f2)) + · · ·+ (lcm(xeiti , fk)) + · · ·
+ (lcm(fk, g)) + (lcm(fk, f2)) + · · ·+ (lcm(fk, fk)).

Hence

b ∩ c ⊆ (lcm(xeiti , g)) + (f2) + · · ·+ (fk) = a.

As a ⊆ b ∩ c, therefore it follows that a = b ∩ c. Now, in order to complete
the proof, we show that a 6= b and a 6= c. In order to show a 6= b, it suffices
to show that xeiti /∈ a. Suppose by way of contradiction that xeiti ∈ a. Then, in
view of [6, Corollary 3], fj | xeiti for some index j. Since xeiti | f1, it follows that
fj | f1. As the sequence f1, . . . , fk is irredundant, so we have fj = f1. Thus
f1 = xeiti g | x

ei
ti . By comparing exponent vectors, we conclude that g = 1, which

is a contradiction. Similarly, we have a 6= c. Consequently, we have a = b ∩ c,
where a ⊂ b and a ⊂ c. This contradicts the assumption that a is a monomial
irreducible ideal.

(⇐) For the converse, assume that a is a generalized-parametric ideal. That
is there are positive integers k, t1, . . . , tk, e1, . . . , ek such that t1 < · · · < tk ≤
d and a = (xe1t1 , . . . , x

ek
tk

). We show that a is a monomial irreducible ideal.
Suppose on the contrary that there exist two monomial ideals b and c such
that a = b∩ c with a 6= b and a 6= c. Then there are monomials f1, f2 such that
f1 ∈ b\a and f2 ∈ c\a. Now, let f1 = xm1

1 · · ·x
md

d and f2 = xn1
1 · · ·x

nd

d . Write
pi = max{mi, ni} for i = 1, . . . , d. Then, for all j = 1, . . . , k, we have mtj < ej ;
because if mtj ≥ ej for some j, then a comparison of exponent vectors shows
that f1 ∈ (xeiti ) ⊆ a, which is a contradiction. Similarly, for i = 1, . . . , k, we
have nti < ei, and hence pti < ei. Consequently, in view of [6, Corollary 3],
lcm(f1, f2) = xp11 · · ·x

pd
d /∈ a. On the other hand, we have

lcm(f1, f2) ∈ b ∩ c = a,

which is a contradiction. �

As the first application of Theorems 2.2 and 2.3 we derive the following
result which shows that a monomial ideal a with respect to x is a parameter
ideal if and only if it is monomial irreducible ideal and Rad(a) = (x).

Proposition 2.4. Let R be a noetherian ring and let x := x1, . . . , xd be an R-
regular sequence contained in the Jacobson radical of R such that the ideal q :=
(x) is prime. Suppose that R is complete with respect to the q-adic topology,
and let a be a non-zero monomial ideal of R with respect to x. Then a is a
parameter ideal if and only if a is a monomial irreducible ideal and Rad(a) = q.
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Proof. (⇒) Let a be a parameter ideal. Then a = (xe11 , . . . , x
ed
d ), where e1, . . . ,

ed are positive integers. Therefore, in view of Theorem 2.2,

Rad(a) = (rad(xe11 ), . . . , rad(xedd )) = (x1, . . . , xd) = q.

Now, we show that a is a monomial irreducible ideal. To do this, assume the
contrary. Then there exist monomial ideals b and c such that a = b ∩ c with
a ⊂ b and a ⊂ c. Hence there exist monomials f1, f2 such that f1 ∈ b, f2 ∈ c
and that f1, f2 /∈ a. Let us consider

f1 = xm1
1 · · ·x

md

d and f2 = xn1
1 · · ·x

nd

d .

Also, we set pi = max{mi, ni} for every i = 1, 2, . . . , d. Then, as f1, f2 /∈ a, it
follows that pi < ei for all i = 1, 2, . . . , d. Consequently,

lcm(f1, f2) = xp11 · · ·x
pd
d /∈ a.

On the other hand, lcm(f1, f2) ⊆ b ∩ c, and so lcm(f1, f2) ∈ a, which is a
contradiction.

(⇐) Let a be a monomial irreducible ideal and Rad(a) = q. Then, the
condition Rad(a) = q implies that a 6= 0, and in view of Theorem 2.3, a is a
generalized-parametric ideal. Hence there exist positive integers

k, t1, . . . , tk, e1, . . . , ek

such that

1 ≤ t1 < · · · < tk ≤ d and a = (xe1t1 , . . . , x
ek
tk

).

Now, as Rad(a) = q, it follows from Theorem 2.2 that

Rad(a) = (xt1 , . . . , xtk) = (x1, . . . , xd),

and so the irredundant monomial ideal a generated by the sequence xe1t1 , . . . , x
ek
tk

contains a power of each element xi. That is, we obtain that a = (xe11 , . . . , x
ed
d ),

and so a is a parameter ideal. �

Let a be a monomial ideal of R with respect to x. Recall that a monomial
f with respect to an R-regular sequence x := x1, . . . , xd is called an a-corner-
element if f 6∈ a and x1f, . . . , xdf ∈ a. The notion of the corner-element was
introduced by Heinzer et al. in [4].

Corollary 2.5. Let R be a noetherian ring and let x := x1, . . . , xd be an R-
regular sequence contained in the Jacobson radical of R such that the ideal q :=
(x) is prime. Suppose that R is complete with respect to the q-adic topology,
and let a be a non-zero monomial ideal of R with respect to x. Then a has a
decomposition of parameter ideals if and only if Rad(a) = q.

Proof. (⇒) If a has a decomposition a = ∩ni=1qi, where qi is a parameter ideal
for every i = 1, . . . , n, then in view of Proposition 2.4, Rad(qi) = q for every
i = 1, . . . , n. Hence

Rad(a) = Rad(∩ni=1qi) = ∩ni=1Rad(qi) = q.
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(⇐) In order to prove the converse, let Rad(a) = q and let f1, . . . , fs denote
the a-corner-elements (note that in view of [4, Remark 3.15] the set of a-corner-
elements is finite). Let b :=

⋂s
i=1 P(fi), and we shall show that a = b. To this

end, in view of [6, Proposition 1], b is a monomial ideal of R with respect
to x; and [4, Corollary 3.3] shows that b is the irredundant intersection of
the s parameter ideals P(fi) for every i = 1, . . . , s. Now, let g be a non-zero
monomial of R with respect to x such that g ∈ a and g 6∈ b. Then, there exists
i, 1 ≤ i ≤ s such that g 6∈ P(fi). Hence, according to [4, Lemma 2.3], fi ∈ (g),
and so fi ∈ a, which is a contradiction. Thus a ⊆ b. In order to show the
reverse inclusion, suppose on the contrary that b is not a subset of a. Then
there exists a monomial f ∈ b such that f 6∈ a. Hence, in view of [4, Remark
3.15] there is a monomial g ∈ R such that gf is an a-corner-element. Now, as
gf ∈ b, it follows that gf = fi for some i = 1, . . . , s. Therefore fi ∈ P(fi); and
so by virtue of [4, Lemma 2.3] fi 6∈ (fi), which is a contradiction. Therefore
a = b, as required. �

Proposition 2.6. Let R be a noetherian ring, let x := x1, . . . , xd be an R-
regular sequence, and suppose that a is a monomial ideal with respect to x.
Assume that f is a monomial with respect to x. Then a ⊆ P(f) if and only if
f /∈ a.

Proof. (⇒) Let a ⊆ P(f). We show that f /∈ a. Suppose to the contrary that
f ∈ a. Then f ∈ P(f), and so in view of [4, Lemma 2.3], f /∈ (f), which is a
contradiction.

(⇐) Let f = xe11 · · ·x
ed
d , and let f /∈ a. Suppose that a = (g1, . . . , gs), where

gi is a monomial with respect to x, for all i = 1, . . . , s. Then f /∈ (g1, . . . , gs),
and so, in view of [4, Remark 2.2], f /∈ (gi) for all i = 1, . . . , s. Hence, it follows
from [4, Lemma 2.3] that gi ∈ P (f) for all i = 1, . . . , s, and so a ⊆ P(f), as
required. �

Corollary 2.7. Let R be a noetherian ring, let x := x1, . . . , xd be an R-regular
sequence, and let f, g be two monomials with respect to x. Then the following
conditions are equivalent:

(i) f ∈ (g),
(ii) g /∈ P(f),
(iii) P(f) ⊆ P(g),
(iv) (P(f) :R g) 6= R.

Proof. The implication (i) ⇒ (ii) follows from [4, Lemma 2.3], and (ii) ⇐ (iii)
follows from Proposition 2.6. In order to show the conclusion (iii) ⇒ (iv),
suppose on the contrary that P(f) :R g = R. Then g ∈ P(f), and so g ∈ P(g).
Hence, in view of [4, Lemma 2.3] we have g /∈ (g), which is a contradiction.

Finally, in order to show (iv)⇒ (i), suppose that f /∈ (g). Then, according to
[4, Lemma 2.3], g ∈ P(f), and so (P(f) :R g) = R, which is a contradiction. �
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Lemma 2.8. Let R be a noetherian ring, let x := x1, . . . , xd be an R-regular
sequence and let f, g be two monomials with respect to x. Then the following
conditions hold:

(i) If f ∈ (g), then deg(f) ≥ deg(g).
(ii) If deg(f) = deg(g) and g ∈ (f), then g = f .
(iii) If deg(f) = deg(g) and f 6= g, then f ∈ P(g).

Proof. (i) Let f = xa11 · · ·x
ad
d and g = xb11 · · ·x

bd
d and f ∈ (g). Then in view of

[4, Lemma 2.3], g /∈ P(f). That is

xb11 · · ·x
bd
d /∈ (xa1+1

1 , . . . , xad+1
d ).

Hence a1 ≥ b1, . . . , ad ≥ bd, and so deg(f) ≥ deg(g), as required.
The part (ii) readily follows from the definition. Finally, in order to show

(iii), suppose that f 6∈ P(g), then in view of [4, Lemma 2.3], we have g ∈ (f).
Hence, it follows from part (ii) that f = g, which is a contradiction. �

Lemma 2.9. Let R be a noetherian ring and let x := x1, . . . , xd be an R-
regular sequence. Suppose that f is a monomial with respect to x and let n ≥ 1
be an integer. Then deg(f) < n if and only if there exists a monomial g with
respect to x of degree n− 1 such that g ∈ (f).

Proof. Let f be a monomial with respect to x and n ≥ 1 an integer such that
deg(f) < n. Let

f = xe11 · · ·x
ed
d and g = x

n−(e2+···+ed+1)
1 xe22 · · ·x

ed
d .

Then deg(g) = n− 1 and that g ∈ (f). Note that n− 1 ≥ e1 + · · ·+ ed.
Conversely, let g be a monomial with respect to x such that deg(g) = n− 1

and g ∈ (f). It follows from Lemma 2.8 that deg(g) ≥ deg(f). Therefore
deg(f) ≤ n− 1, as required. �

We end this section with the following final main result of the paper.

Theorem 2.10. Let R be a noetherian ring, let x := x1, . . . , xd be an R-regular
sequence, and suppose that q := (x1, . . . , xd). Then, for any integer n ≥ 1, we
have

qn = ∩deg(f)=n−1P(f),

where the intersection is taken over all monomials f with respect to x such that
deg(f) = n− 1. Moreover, this intersection is irredundant.

Proof. Let a =
⋂

deg(f)=n−1 P(f), where the intersection runs over all mono-

mials f such that deg(f) = n− 1, and we show a = qn. To this end, since each
ideal P(f) is a monomial ideal with respect to x, it follows from [6, Lemma
3] that a is also a monomial ideal with respect to x. Thus, in order to show
a = qn, it is enough for us to show that, if g is a monomial with respect to x
in R, then g ∈ a if and only if g ∈ qn.
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To do this, we have g /∈ a if and only if there exists a monomial f of degree
n− 1 such that g /∈ P(f), by definition of a, that is, if and only if there exists
a monomial f of degree n − 1 such that f ∈ (g). But Lemma 2.9 shows that
this condition holds if and only if deg(g) ≤ n − 1, and this is so if and only if
g /∈ qn, by the definition of qn.

To see that the intersection is irredundant, let g and f be distinct monomials
with deg(g) = deg(f) = n − 1. Now, Lemma 2.8 shows that f ∈ P(g) and so
by Corollary 2.7, we have P(g) is not a subset of P(f). This completes the
proof. �
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