• Title/Summary/Keyword: (A-) semiring

Search Result 58, Processing Time 0.027 seconds

LINEAR PRESERVERS OF SPANNING COLUMN RANK OF MATRIX PRODUCTS OVER SEMIRINGS

  • Song, Seok-Zun;Cheon, Gi-Sang;Jun, Young-Bae
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.1043-1056
    • /
    • 2008
  • The spanning column rank of an $m{\times}n$ matrix A over a semiring is the minimal number of columns that span all columns of A. We characterize linear operators that preserve the sets of matrix ordered pairs which satisfy multiplicative properties with respect to spanning column rank of matrices over semirings.

A CHARACTERIZATION OF FINITE FACTORIZATION POSITIVE MONOIDS

  • Polo, Harold
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.669-679
    • /
    • 2022
  • We provide a characterization of the positive monoids (i.e., additive submonoids of the nonnegative real numbers) that satisfy the finite factorization property. As a result, we establish that positive monoids with well-ordered generating sets satisfy the finite factorization property, while positive monoids with co-well-ordered generating sets satisfy this property if and only if they satisfy the bounded factorization property.

LINEAR MAPS THAT PRESERVE COMMUTING PAIRS OF MATRICES OVER GENERAL BOOLEAN ALGEBRA

  • SONG SEOK-ZUN;KANG KYUNG-TAE
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.1
    • /
    • pp.77-86
    • /
    • 2006
  • We consider the set of commuting pairs of matrices and their preservers over binary Boolean algebra, chain semiring and general Boolean algebra. We characterize those linear operators that preserve the set of commuting pairs of matrices over a general Boolean algebra and a chain semiring.

IDEMPOTENT MATRIX PRESERVERS OVER BOOLEAN ALGEBRAS

  • Song, Seok-Zun;Kang, Kyung-Tae;Beasley Leroy B.
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.1
    • /
    • pp.169-178
    • /
    • 2007
  • We consider the set of $n{\times}n$ idempotent matrices and we characterize the linear operators that preserve idempotent matrices over Boolean algebras. We also obtain characterizations of linear operators that preserve idempotent matrices over a chain semiring, the nonnegative integers and the nonnegative reals.

On the Relationship between Zero-sums and Zero-divisors of Semirings

  • Hetzel, Andrew J.;Lufi, Rebeca V. Lewis
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.2
    • /
    • pp.221-233
    • /
    • 2009
  • In this article, we generalize a well-known result of Hebisch and Weinert that states that a finite semidomain is either zerosumfree or a ring. Specifically, we show that the class of commutative semirings S such that S has nonzero characteristic and every zero-divisor of S is nilpotent can be partitioned into zerosumfree semirings and rings. In addition, we demonstrate that if S is a finite commutative semiring such that the set of zero-divisors of S forms a subtractive ideal of S, then either every zero-sum of S is nilpotent or S must be a ring. An example is given to establish the existence of semirings in this latter category with both nontrivial zero-sums and zero-divisors that are not nilpotent.