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THE STRUCTURE OF IDEALS IN A POLYNOMIAL SEMIRING
IN SEVERAL VARIABLES

By Louis Dale

1. Introduection

In recent literature we have examined the structure of monic, monic f{ree
and A-ideals in a polynomial semiring. In this paper we extend this examination
into polynomial semirings in several variables. We do this by investigating a
class of polynomials, called saturated polynomials, that can be grouped together
naturally to form ideals. It happens that these ideals form a basic structure
for arbitrary ideals in a polynomial semiring in several variables. We develop
a structure theorem for ideals and apply this theorem to monic, monic free
and k-ideals.

Let S be a semiring with an identity and z, z,, -,z be indeterminates which
commute with each other and with each element of S. Then Sf.rl,.zz, -5z,] 18

a qemiring and a typical element of S[x,z,,z,] is of the form E“:‘.‘ et

fg+da 1

.a: " where i, i are nonnegative integers and ;. . ES If we let a=
- L 1 l;" fu .
{iiyni ), 0= ‘TIIZ X, @=a . and ¢" =z z,Z, then we can denote
Za; i laf!‘:r" .1:” by Eaaw . With this notation we call an ideal M in S[z,z,
1

w,z,] a monic ideal if Z‘aac)“EM implies aad)“EM for each a and an ideal F is
called monic free if M is a monic ideal such that MCF, then M={0}. An ideal
B in a semiring § is called a k-ideal in S if a=B, ¢S and a-+c=B imply ¢=B.
Finally we call a semiring § a strict semiring if a,b=S and a+b=S imply

a=b=0. For this paper all semirings will be commutative and strict.

2. Saturated ideals

Consider an ideal A in a polynomial semiring Sz, 2,---,.1:”]. We want to
find a way to partition the elements of A in some natural arrangement. We
will call a polynomial f=Eaad>“ in S[xl..rz'---.x"] saturated in S[xl,.rz,---,:rn] if
either /=0 or each z,€X={z 2,z ] appears in some nonzero term of f. For
example, the polynomial f=3z-+6xy+Tyz-+5 is saturated in Z[r,yz] but not
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in Z[w, x,y,z]. If § is a strict semiring and f,g are saturated in S[xl,.rz,---,x"].
then it is clear that f+g, fg and any multiple of f are all saturated in S[z, z,,
ey ], i.e., the set Sy of all saturated polynomials in S[rl.xz, ---,:r”] is an
ideal. Consequently, if A is an ideal in Sz z, 2,1, then A,=ANSy is an
ideal in S[z,z, -, 2,]. Let e={z/, 2,0, 2,'} be a subset of X. Then S, and
A =ANS, are ideals in S[.I‘I'. z, - x,/]. If v=¢, define A =ANS. Note that if
t7#4d, then A_NA,={0}. Thus every szaad)“EA belongs to one and only one
A, Consequently, any ideal A in S[z,z,,-,z,] can be decomposed into a
finite number of saturated subideals, i.e., A= éJXAr where A . i saturated in

S[z/,x), 2,1 and A_NA;={0} if z#5. Now A_is an ideal in S[z 'z, 2]

1. However, A_ generates an ideal (4 in S[xl,:cz,---,

but not in S(z;, 2,2,

2’
-z, 1. This proves the following structure theorem.
THEOREM 2.1. If A is an ideal in S[z, xz,---,xn], then A=)C:,J'((A,), where
T=
A_NA={0} for t£d.

This decomposition in a sense partitions A into a sum of simpler ideals. The
‘question now is how useful is this decomposition? We have one use in the
following theorem.

THEOREM 2.2. An ideal A in S[.rl, xa.“-,.r"] is monic free if and only if (4,

s monic free for each tCX.

PROOF. Suppose A is a monic free ideal in §[z,z,, -, z,] and M isa monic
ideal such that MC (A:)‘ From MS(A4)CSA it follows that M={0} and (A ) is
monic free. Next suppose (A 3 is monic free for each =X and M is monic
such that MCTA. Since M is monic we must have aa@“EM for some ¢, 5. Now
A= g A_ and it follows that amcf)"’EAr for some 7 and consequently, aad)"E(At).
Sinc:ze? )((Ar) is monic free we must have ¢ =0 and consequently, M={0}.

Therefore A is monic free.

3. The structure of monic and k-ideals

The decomposition of an ideal A in S[xl,xz,---,xn] given in theorem 2.1 is
useful in dealing with monic free ideals but not useful in dealing with monic
ideals or k-ideals. The elements in these ideals sometimes split into smaller



The Structure of Ideals in a Polynomial Semiring in Several Variables 131
pieces. For if f+g8E(A)) we can make no claim concerning whether or not
for g=(A)) using the fact that A, is saturated. Hence we need to alter our
decomposition a bit to make it more useful, To do this let

r=[.rl’,.rz’,---,_r"]gx and Pt=aE(Aa).
Cr

Now P_ is an ideal in S[:rl,.rz,---,x"j and ACP,.

THEOREM 3.1. If A is an ideal in S{.rl, z, 5 2,] and tCX, then
A=P +J _ A,

AZe

PROOF. It follows from theorem 2.1 that A=}_:.'X_(A'). But
=
A=_(A)=_(A)+ I A=P +1I_ A,
X T IGe AZr 'age
This theorem in a sense factors the ideal A into two ideals P_and [Z A. This
AZr
factorization is not unique since tCX is arbitrary. Thus we get a decomposition

for A for each rCX.

THEOREM 3.2. If A is an ideal in S:zl,xz.---,xn] and t,A€EX, then P_(\P,=
¢ s

Tl

PROOF. Let f, be a polynomial in P_1P,. Then fEA, f,EP, and f EP,
and it follows that u“r and #CA. Consequently, #ZzA and thus f”Esz.
Hence PrﬂPngtm. Reversing the steps will show that megprnpz and

consequently, that P, B P E,;

Now if f-+g is a saturated polynomial in P_ we know that fea, and gEA,

for some 1,2,Cc. Thus the structure of P, allows us to know that for

g€P,. This property of P, allows us to prove the following.
THEOREM 3.3. An ideal A in S[xl,xz.---.x”] is monic if and only if P_is
monic for each t—X.

PROOF. Suppose A is a monic ideal and f=Za ¢"€P.. Now a d*EA since A

is monic. But A= UXA" and it follows that ¢z“ﬂ)"e‘4‘1 for some ACX. But fEP,
C

implies that ACr. Hence "aa)ae’%gpr:gma) and i1t follows that P‘r is a
=T
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monic ideal. Conversely, suppose P, is monic for each 7CX. Since f=A implies
that f=A CP, for some =X, it follows that A must be monic also.

THEOREM 3.4. An ideal A in S[x,x, - x,] is a k-ideal if and only if P_is
a k-ideal for each tZ=X.

PROOF. Suppose A is a k-ideal and f,f+gEF,. Since A is a k-ideal and
P A it follows that gEA. Now A=a chA" and it follows that gEA, for some
AZX. But f+g&P, implies that 2=r. Hence gEARQPr=£(Az) and consequent-
ly, P isa k-ideal. Conversely suppose that P_ is a k-ideal for each =X and
fif+g=A. Now fed, and f+g€4, for some A,4,SX, Let t=2,U4,. Then
f.f~g<P, and since P_is a k-ideal it follows that g&PCA and A is a k-ideal.

It is interesting to note that an ideal A can be written A=P +J _(4,) for
AZr

each 7CX. But P, is an ideal in Slz,, 2, 2,] and we must be able to write

P==PJf‘E,(AJ). Thus ==X and P,=P =A. Consequently, if X;:lggzg...

Dz is a descending chain of subsets of X, then AQPnQPrz;'";Pr is a

n
descending chain of ideals. This fact and theorem 3.4 proves the following.

THEOREM 3.5. If A is an ideal in Sz, 2, z,] and X2e D,
descending sequence of subsets of X, then ADP OP 2-+2P_. Further, if A isa
k-ideal, then each P_ is a k-ideal.

T i |
=27 is a

The ideals (A) and P, may look similar but they are very different. (A,)
may be monic free while P_ is monic and (4 ) be a k-ideal while P_ is not.

4. Weak k-ideals and k-closures

It is well known that every ideal in a semiring is not a k-ideal but every
ideal is contained in a k-ideal. Let A be an ideal in a semiring §. The ideal
.-Tk=ﬂ{BlB is a k-i1deal and B=A})
is called the k-closure of A. Tt is clear that A 4 is the “smallest” k-ideal contain-
ing A. We call an ideal Ain Sz, z,, -+, z,] aweak k-ideal if there is an integer

n such that A is a k-ideal with respect to all polynomials in A with degree less
than or equal to n. The largest such integer is called the k-degree of A. If no

such integer exists then A is said to have k-degree co. Now if A is an ideal in
S[z,z,,+,2,] and # is a fixed integer let
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Ay =lflfeA and degree f<n]}.

The ideal

‘Tk.: M {B|B is a weak k-ideal with k-degree at least » and Af_gB} will be
called the weak k-closure of A.

We now apply these concepts to saturated polynomials. If A is an ideal in
S:xl. T J.’”I let

A =ANA,

Thus Arf’ is the set of all polynomials in A saturated in Sij’,,rz’,---,.r!’] with

degree less than or equal to z. It is clear that AJ..= _;szlrf_. Now we have
A=A, and from section 2 we have A= |) A. Hence .
n fa X ¥
A=A, = J.a..)
. L;:, fa !;rJ lr(jx 'f'l
We will denote the weak k-closure of the ideal (4 ) by (4)) 4, and the &-closure
of Ar by ‘(_A_r);.

THEOREM 4.1. If A is an ideal in S[x 2, z,] then A, =] _(A),
=X v

PROOF. From theorem 2.1 we have A-——r;;‘{(:-lr) where A NA={0} for v#3.
Since A, is an ideal in [z, z, -, 2,] we have Ek=‘§((§k)f Now (A ) is an
ideal in iz, z,] and (A, is the smallest i-ideal containing (4,). Also
(4,), is a k-ideal in S[z,z, -, 2,] containing (4_) and Cerk. Since A, is the
smallest k-ideal containing A it follows that (4,)_is the smallest -ideal con-

taining (4. Consequently, (4,) =(A), and it follows that ¥(4,) =X({A), and
hence A k:,?::} (a),

COROLLARY 4.2. If A is an ideal in S(z,z,,,z,] then A, =(P ), + (A
w=r

FROOF. Theorem 4.1 assures that
Ak:r%(‘-i:)k=g("la)k+g("ll)&=(Pr)k+g(AJ)k'

5. Example

Let A=(2,2"+2, y"+2, z), n>m>t>1, be an ideal in Z*[z,5,2]. Now A
is a weak k-ideal of degree (m—1). To see this we check the basis elements
of A and note that y"+2, 2€A but y"&A. Thus A is not a k-ideal. Now any

polynomial in y of degree (m—1) or less is of the form 2 Ea‘.yf and A is certainly
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a k-ideal with respect to these polynomials since 2al.y"EA. Similarly, A is a
k-ideal with respect to all polynomials in z of degree (n—1) or less, and A is
a k-ideal with respect to all polynomials in z. Since n>m, (n—1)>(m—1) and
it follows that A is a weak k-ideal with 4-degree (m—1). Now let us partition
A into saturated polynomials. Let 7,=¢, t,={z}, r2={yl. t,= 1z}, 7,= {z,5},
=I5z}, 7,=nz), 7= {z,3,2}=X.
Then the saturated ideals are
A, =(2), A, =("+2)SZ% 2], A =G"+2)S2ZD],
A =(NSZ7[2], A = +9)+ 0 +2)SZ" 2],
A ="+ +()CSZ [2,2], A =0"+2)+(z)SZ0n 2!,
A_=(a"+2)+ 0" +2)+(z)SZ" [2,3,2].
Now
P= (Aru) and Prok: (A“),
P =(A )+ (A, )=(a"+2)+(2) and P_,=(z",2)
P, =(A,)+(A,)=0"+2)+(2) and P_,=(",2)
P, =(A,)+(A,)=(2)+(2) and P_,=P_
P, =(A )+ (A )+(A)+(A)=(z"+2)+("+2)+(2) and P_,=(z",5",2)
P, =(A)+(A)+(A4)+(A)=(2"+2)+()+(2) and P_,=(2",7,2)
P,=(A)+(A)+(A)+(4)=0"+2)+(z)+(2) and P_,=0"22)
P =A and Phk:gkz (2" 5™ 2, 2).
A few observations.
1. The A-degree of P". Pn, P“ and Pﬁ is (m—1), while the A -degree of
P, and P_ is (n—1), and the k-degree of is oo,
2. Each A_is a k-ideal and has t-degree co.
3. It is clear that for each X
k-degree A< k-degree P_<k-degree A
4. XDr Dr,2r, and it follows that ADP OP OP_ is a descending chain of

ideals. Also A =P, =P _,OP_, is a descending chain of k-ideals.
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