Kyungpook Math. J. Volume 26, Number 2 December, 1986

THE STRUCTURE OF IDEALS IN A POLYNOMIAL SEMIRING IN SEVERAL VARIABLES

By Louis Dale

1. Introduction

In recent literature we have examined the structure of monic, monic free and k-ideals in a polynomial semiring. In this paper we extend this examination into polynomial semirings in several variables. We do this by investigating a class of polynomials, called saturated polynomials, that can be grouped together naturally to form ideals. It happens that these ideals form a basic structure for arbitrary ideals in a polynomial semiring in several variables. We develop a structure theorem for ideals and apply this theorem to monic, monic free and k-ideals.

Let S be a semiring with an identity and x_1, x_2, \dots, x_n be indeterminates which commute with each other and with each element of S. Then $S[x_1, x_2, \dots, x_n]$ is a semiring and a typical element of $S[x_1, x_2 \cdots, x_n]$ is of the form $\sum a_{i_1 i_2 \cdots i_n} x_1^{i_1} x_2^{i_2} \cdots x_n^{i_n}$ where i_1, i_2, \dots, i_n are nonnegative integers and $a_{i_1 i_2 \cdots i_n} \in S$. If we let $\alpha =$ $\{i_1, i_2, \dots, i_n\}, \ \Phi = x_1 x_2 \cdots x_n, \ a_\alpha = a_{i_1 i_2 \cdots i_n}$ and $\ \Phi^\alpha = x_1^{i_1} x_2^{i_2} \cdots x_n^{i_n}$ then we can denote $\sum a_{i_1 i_2 \cdots i_n} x_1^{i_1} x_2^{i_2} \cdots x_n^{i_n}$ by $\sum a_\alpha \Phi^\alpha$. With this notation we call an ideal M in $S[x_1, x_2, \dots, x_n]$ a monic ideal if $\sum a_\alpha \Phi^\alpha \in M$ implies $a_\alpha \Phi^\alpha \in M$ for each α and an ideal F is called monic free if M is a monic ideal such that $M \subseteq F$, then $M = \{0\}$. An ideal B in a semiring S is called a k-ideal in S if $a \in B$, $c \in S$ and $a + c \in B$ imply $c \in B$. Finally we call a semiring S a strict semiring if $a, b \in S$ and $a + b \in S$ imply a = b = 0. For this paper all semirings will be commutative and strict.

2. Saturated ideals

Consider an ideal A in a polynomial semiring $S[x_1, x_2, \dots, x_n]$. We want to find a way to partition the elements of A in some natural arrangement. We will call a polynomial $f = \sum a_a \phi^a$ in $S[x_1, x_2, \dots, x_n]$ saturated in $S[x_1, x_2, \dots, x_n]$ if either f=0 or each $x_i \in X = \{x_1, x_2, \dots, x_n\}$ appears in some nonzero term of f. For example, the polynomial f=3x+6xy+7yz+5 is saturated in Z[x,y,z] but not

Louis Dale

in Z[w, x, y, z]. If S is a strict semiring and f, g are saturated in $S[x_1, x_2, \cdots, x_n]$, then it is clear that f+g, fg and any multiple of f are all saturated in $S[x_1, x_2, \cdots, x_n]$, i.e., the set S_X of all saturated polynomials in $S[x_1, x_2, \cdots, x_n]$ is an ideal. Consequently, if A is an ideal in $S[x_1, x_2, \cdots, x_n]$, then $A_X = A \cap S_X$ is an ideal in $S[x_1, x_2, \cdots, x_n]$. Let $\tau = \{x_1', x_2', \cdots, x_t'\}$ be a subset of X. Then S_{τ} and $A_{\tau} = A \cap S_{\tau}$ are ideals in $S[x_1', x_2', \cdots, x_t']$. If $\tau = \phi$, define $A_{\tau} = A \cap S$. Note that if $\tau \neq \delta$, then $A_{\tau} \cap A_{\delta} = \{0\}$. Thus every $f = \sum a_{\alpha} \phi^{\alpha} \in A$ belongs to one and only one A_{τ} . Consequently, any ideal A in $S[x_1, x_2, \cdots, x_n]$ can be decomposed into a finite number of saturated subideals, i.e., $A = \bigcup A_{\tau}$ where A_{τ} is saturated in $S[x_1', x_2', \cdots, x_t']$ and $A_{\tau} \cap A_{\delta} = \{0\}$ if $\tau \neq \delta$. Now A_{τ} is an ideal in $S[x_1', x_2', \cdots, x_t']$ but not in $S[x_1, x_2, \cdots, x_n]$. However, A_{τ} generates an ideal in $S[x_1, x_2', \cdots, x_t']$ but not in $S[x_1, x_2, \cdots, x_n]$. However, A_{τ} generates an ideal (A_{τ}) in $S[x_1, x_2, \cdots, x_n]$.

THEOREM 2.1. If A is an ideal in $S[x_1, x_2, \dots, x_n]$, then $A = \sum_{\tau \subseteq X} (A_{\tau})$, where $A_{\tau} \cap A_{\delta} = \{0\}$ for $\tau \neq \delta$.

This decomposition in a sense partitions A into a sum of simpler ideals. The question now is how useful is this decomposition? We have one use in the following theorem.

THEOREM 2.2. An ideal A in $S[x_1, x_2, \dots, x_n]$ is monic free if and only if (A_{τ}) is monic free for each $\tau \subseteq X$.

PROOF. Suppose A is a monic free ideal in $S[x_1, x_2, \dots, x_n]$ and M is a monic ideal such that $M \subseteq (A_{\tau})$. From $M \subseteq (A_{\tau}) \subseteq A$ it follows that $M = \{0\}$ and (A_{τ}) is monic free. Next suppose (A_{τ}) is monic free for each $\tau \subseteq X$ and M is monic such that $M \subseteq A$. Since M is monic we must have $a_a \phi^a \in M$ for some $a_a \in S$. Now $A = \bigcup_{\tau \subseteq X} A_{\tau}$ and it follows that $a_a \phi^a \in A_{\tau}$ for some τ and consequently, $a_a \phi^a \in (A_{\tau})$. Since (A_{τ}) is monic free we must have $a_a = 0$ and consequently, $M = \{0\}$.

Therefore A is monic free.

3. The structure of monic and k-ideals

The decomposition of an ideal A in $S[x_1, x_2, \dots, x_n]$ given in theorem 2.1 is useful in dealing with monic free ideals but not useful in dealing with monic ideals or k-ideals. The elements in these ideals sometimes split into smaller pieces. For if $f+g \in (A_{\tau})$ we can make no claim concerning whether or not f or $g \in (A_{\tau})$ using the fact that A_{τ} is saturated. Hence we need to alter our decomposition a bit to make it more useful. To do this let

$$\tau = \{x_1', x_2', \dots, x_t'\} \subseteq X \text{ and } P_{\tau} = \sum_{\delta \subseteq \tau} (A_{\delta}).$$

Now P_{τ} is an ideal in $S[x_1, x_2, \dots, x_n]$ and $A_{\tau} \subseteq P_{\tau}$.

THEOREM 3.1. If A is an ideal in $S[x_1, x_2, \dots, x_n]$ and $\tau \subseteq X$, then $A = P_{\tau} + \sum_{\lambda \not\subseteq \tau} A_{\lambda}.$

PROOF. It follows from theorem 2.1 that $A = \sum_{\tau \subseteq X} (A_{\tau})$. But $A = \sum_{\tau \subseteq X} (A_{\tau}) = \sum_{\delta \subseteq \tau} (A_{\delta}) + \sum_{\lambda \not\subseteq \tau} A_{\lambda} = P_{\tau} + \sum_{\lambda \not\subseteq \tau} A_{\lambda}$.

This theorem in a sense factors the ideal A into two ideals P_{τ} and $\sum_{\lambda \leq \tau} A_{\tau}$. This factorization is not unique since $\tau \subseteq X$ is arbitrary. Thus we get a decomposition for A for each $\tau \subseteq X$.

THEOREM 3.2. If A is an ideal in $S[x_1, x_2, \dots, x_n]$ and $\tau, \lambda \in X$, then $P_{\tau} \cap P_{\lambda} = P_{\tau \cap \lambda}$.

PROOF. Let f_{μ} be a polynomial in $P_{\tau} \cap P_{\lambda}$. Then $f_{\mu} \in A_{\mu}$, $f_{\mu} \in P_{\tau}$ and $f_{\mu} \in P_{\lambda}$ and it follows that $\mu \subseteq \tau$ and $\mu \subseteq \lambda$. Consequently, $\mu \subseteq \tau \cap \lambda$ and thus $f_{\mu} \in P_{\tau \cap \lambda}$. Hence $P_{\tau} \cap P_{\lambda} \subseteq P_{\tau \cap \lambda}$. Reversing the steps will show that $P_{\tau \cap \lambda} \subseteq P_{\tau} \cap P_{\lambda}$ and consequently, that $P_{\tau \cap \lambda} = P_{\tau} \cap P_{\lambda}$.

Now if f+g is a saturated polynomial in P_{τ} we know that $f \in A_{\lambda_1}$ and $g \in A_{\lambda_2}$ for some $\lambda_1, \lambda_2 \subseteq \tau$. Thus the structure of P_{τ} allows us to know that f or $g \in P_{\lambda}$. This property of P_{λ} allows us to prove the following.

THEOREM 3.3. An ideal A in $S[x_1, x_2, \dots, x_n]$ is monic if and only if P_{τ} is monic for each $\tau \subseteq X$.

PROOF. Suppose A is a monic ideal and $f = \sum a_{\alpha} \phi^{\alpha} \in P_{\tau}$. Now $a_{\alpha} \phi^{\alpha} \in A$ since A is monic. But $A = \bigcup_{\tau \subseteq X} A_{\delta}$ and it follows that $a_{\alpha} \phi^{\alpha} \in A_{\lambda}$ for some $\lambda \subseteq X$. But $f \in P_{\tau}$ implies that $\lambda \subseteq \tau$. Hence $a_{\alpha} \phi^{\alpha} \in A_{\lambda} \subseteq P_{\tau} = \sum_{\lambda \subseteq \tau} (A_{\lambda})$ and it follows that P_{τ} is a

Louis Dale

monic ideal. Conversely, suppose P_{τ} is monic for each $\tau \subseteq X$. Since $f \in A$ implies that $f \in A_{\tau} \subseteq P_{\tau}$ for some $\tau \subseteq X$, it follows that A must be monic also.

THEOREM 3.4. An ideal A in $S[x_1, x_2, \dots, x_n]$ is a k-ideal if and only if P_{τ} is a k-ideal for each $\tau \subseteq X$.

PROOF. Suppose A is a k-ideal and $f, f+g \in P_{\tau}$. Since A is a k-ideal and $P_{\tau} \subseteq A$ it follows that $g \in A$. Now $A = \bigcup_{\delta \subseteq X} A_{\delta}$ and it follows that $g \in A_{\lambda}$ for some $\lambda \subseteq X$. But $f+g \in P_{\tau}$ implies that $\lambda \subseteq \tau$. Hence $g \in A_{\lambda} \subseteq P_{\tau} = \sum_{\lambda \subseteq \tau} (A_{\lambda})$ and consequently, P_{τ} is a k-ideal. Conversely suppose that P_{τ} is a k-ideal for each $\tau \subseteq X$ and $f, f+g \in A$. Now $f \in A_{\lambda_1}$ and $f+g \in A_{\lambda_2}$ for some $\lambda_1, \lambda_2 \subseteq X$. Let $\tau = \lambda_1 \cup \lambda_2$. Then $f, f+g \in P_{\tau}$ and since P_{τ} is a k-ideal it follows that $g \in P \subseteq A$ and A is a k-ideal.

It is interesting to note that an ideal A can be written $A = P_{\tau} + \sum_{\lambda \subseteq \tau} (A_{\lambda})$ for each $\tau \subseteq X$. But P_{τ} is an ideal in $S[x_1, x_2, \cdots, x_n]$ and we must be able to write $P_{\tau} = P_{\delta} + \sum_{\lambda \subseteq \delta} (A_{\lambda})$. Thus $\delta \subseteq \tau \subseteq X$ and $P_{\delta} \subseteq P_{\tau} \subseteq A$. Consequently, if $X \supseteq \tau_1 \supseteq \tau_2 \supseteq \cdots$ $\supseteq \tau_n$ is a descending chain of subsets of X, then $A \supseteq P_{\tau_1} \supseteq P_{\tau_2} \supseteq \cdots \supseteq P_{\tau_n}$ is a descending chain of ideals. This fact and theorem 3.4 proves the following.

THEOREM 3.5. If A is an ideal in $S[x_1, x_2, \dots, x_n]$ and $X \supseteq \tau_1 \supseteq \tau_2 \supseteq \dots \supseteq \tau_n$ is a descending sequence of subsets of X, then $A \supseteq P_{\tau_1} \supseteq P_{\tau_2} \supseteq \dots \supseteq P_{\tau_n}$. Further, if A is a k-ideal, then each P_{τ_1} is a k-ideal.

The ideals (A_r) and P_r may look similar but they are very different. (A_r) may be monic free while P_r is monic and (A_r) be a k-ideal while P_r is not.

4. Weak k-ideals and k-closures

It is well known that every ideal in a semiring is not a k-ideal but every ideal is contained in a k-ideal. Let A be an ideal in a semiring S. The ideal $\overline{A}_k = \bigcap \{B | B \text{ is a } k\text{-ideal and } B \subseteq A\}$

is called the *k*-closure of A. It is clear that \overline{A}_k is the "smallest" *k*-ideal containing A. We call an ideal A in $S[x_1, x_2, \dots, x_n]$ a weak *k*-ideal if there is an integer *n* such that A is a *k*-ideal with respect to all polynomials in A with degree less than or equal to *n*. The largest such integer is called the *k*-degree of A. If no such integer exists then A is said to have *k*-degree ∞ . Now if A is an ideal in $S[x_1, x_2, \dots, x_n]$ and *n* is a fixed integer let The Structure of Ideals in a Polynomial Semiring in Several Variables 133

 $A_{f} = \{f | f \in A \text{ and degree } f \leq n\}.$

The ideal

 $\overline{A}_{k_*} = \bigcap \{B | B \text{ is a weak } k \text{-ideal with } k \text{-degree at least } n \text{ and } A_{f_*} \subseteq B\}$ will be called the weak k -closure of A.

We now apply these concepts to saturated polynomials. If A is an ideal in $S[x_1, x_2, \cdots, x_n]$ let

$$A_{\tau f_s} = A_{\tau} \cap A_{f_s}.$$

Thus $A_{\tau f_s}$ is the set of all polynomials in A saturated in $S[x_1', x_2', \dots, x_t']$ with degree less than or equal to *n*. It is clear that $A_{f_s} = \bigcup_{\tau \subseteq X} A_{\tau f_s}$. Now we have $A = \bigcup_{n} A_{f_s}$ and from section 2 we have $A = \bigcup_{\tau \subseteq X} A_{\tau}$. Hence

$$A = \bigcup_{n} A_{f_n} = \bigcup_{n} \{ \bigcup_{\mathfrak{r} \subseteq X} \overline{A}_{\mathfrak{r} f_n} \}.$$

We will denote the weak k-closure of the ideal (A_{τ}) by $\overline{(A_{\tau})}_{k_{\pi}}$ and the k-closure of A_{τ} by $\overline{(A_{\tau})}_{k_{\pi}}$.

THEOREM 4.1. If A is an ideal in $S[x_1, x_2, \dots, x_n]$ then $\overline{A}_k = \sum_{\tau \subseteq X} \overline{(A_{\tau})}_k$.

PROOF. From theorem 2.1 we have $A = \sum_{\tau \subseteq X} (A_{\tau})$ where $A_{\tau} \cap A_{\delta} = \{0\}$ for $\tau \neq \delta$. Since \overline{A}_k is an ideal in $S[x_1, x_2, \dots, x_n]$ we have $\overline{A}_k = \sum_{\tau \subseteq X} (\overline{A}_k)_{\tau}$. Now (A_{τ}) is an ideal in $S[x_1, x_2, \dots, x_n]$ and $\overline{(A_{\tau})_k}$ is the smallest k-ideal containing (A_{τ}) . Also $(\overline{A}_k)_{\tau}$ is a k-ideal in $S[x_1, x_2, \dots, x_n]$ containing (A_{τ}) and $\overline{(A_{\tau})_k}$. Since \overline{A}_k is the smallest k-ideal containing $(A_{\tau})_k$. Also if $\overline{(A_k)_{\tau}}$ is a k-ideal containing A it follows that $(\overline{A}_k)_{\tau}$ is the smallest k-ideal containing $(A_{\tau})_k$. Also $(\overline{A}_{\tau})_{\tau}$. Consequently, $(\overline{A}_k)_{\tau} = \overline{(A_{\tau})_k}$ and it follows that $\Sigma(\overline{A}_k)_{\tau} = \Sigma(\overline{A_{\tau})_k}$ and hence $\overline{A}_k = \sum_{\tau \subseteq X} \overline{(A_{\tau})_k}$.

COROLLARY 4.2. If A is an ideal in $S[x_1, x_2, \dots, x_n]$ then $\overline{A}_k = \overline{(P_\tau)_k} + \sum_{\lambda \not\subseteq \tau} \overline{(A_\tau)_k}$.

PROOF. Theorem 4.1 assures that

$$\overline{A}_{k} = \sum_{\mathfrak{r} \not\subseteq X} \overline{(A_{\mathfrak{r}})}_{k} = \sum_{\mathfrak{d} \subseteq \mathfrak{r}} \overline{(A_{\mathfrak{d}})}_{k} + \sum_{\lambda \not\subseteq \mathfrak{r}} \overline{(A_{\lambda})}_{k} = \overline{(P_{\mathfrak{r}})}_{k} + \sum_{\lambda \not\subseteq \mathfrak{r}} \overline{(A_{\lambda})}_{k}.$$

5. Example

Let $A = (2, x^{n}+2, y^{m}+2, z^{t}), n > m > t > 1$, be an ideal in $Z^{+}[x, y, z]$. Now A is a weak k-ideal of degree (m-1). To see this we check the basis elements of A and note that $y^{m}+2$, $2 \in A$ but $y^{m} \notin A$. Thus A is not a k-ideal. Now any polynomial in y of degree (m-1) or less is of the form $2 \sum a_{i}y^{i}$ and A is certainly

Louis Dale

a k-ideal with respect to these polynomials since $2a_iy^i \in A$. Similarly, A is a k-ideal with respect to all polynomials in x of degree (n-1) or less, and A is a k-ideal with respect to all polynomials in z. Since n > m, (n-1) > (m-1) and it follows that A is a weak k-ideal with k-degree (m-1). Now let us partition A into saturated polynomials. Let $\tau_0 = \phi$, $\tau_1 = \{x\}$, $\tau_2 = \{y\}$, $\tau_3 = \{z\}$, $\tau_4 = \{x, y\}$, $\tau_5 = \{x, z\}$, $\tau_6 = \{y, z\}$, $\tau_7 = \{x, y, z\} = X$. Then the saturated ideals are

$$\begin{split} &A_{\tau_0} = (2), \ A_{\tau_1} = (x^n + 2) \subseteq Z^+[x], \ A_{\tau_2} = (y^m + 2) \subseteq Z[y], \\ &A_{\tau_3} = (z^t) \subseteq Z^+[x], \ A_{\tau_4} = (x^n + y) + (y^m + 2) \subseteq Z^+[y, z], \\ &A_{\tau_5} = (x^n + 2) + (z^t) \subseteq Z^+[x, z], \ A_{\tau_6} = (y^m + 2) + (z^t) \subseteq Z[y, z], \\ &A_{\tau_7} = (x^n + 2) + (y^m + 2) + (z^t) \subseteq Z^+[x, y, z]. \end{split}$$

Now

$$\begin{split} &P_{\tau_0} = (A_{\tau_0}) \text{ and } \bar{P}_{\tau_0 k} = (A_{\tau_0}), \\ &P_{\tau_1} = (A_{\tau_1}) + (A_{\tau_0}) = (x^n + 2) + (2) \text{ and } \bar{P}_{\tau_1 k} = (x^n, 2) \\ &P_{\tau_2} = (A_{\tau_2}) + (A_{\tau_0}) = (y^m + 2) + (2) \text{ and } \bar{P}_{\tau_2 k} = (y^m, 2) \\ &P_{\tau_3} = (A_{\tau_3}) + (A_{\tau_0}) = (z^t) + (2) \text{ and } \bar{P}_{\tau_3 k} = P_{\tau_3} \\ &P_{\tau_4} = (A_{\tau_4}) + (A_{\tau_1}) + (A_{\tau_2}) + (A_{\tau_0}) = (x^n + 2) + (y^m + 2) + (2) \text{ and } \bar{P}_{\tau_4 k} = (x^n, y^m, 2) \\ &P_{\tau_5} = (A_{\tau_5}) + (A_{\tau_3}) + (A_{\tau_1}) + (A_{\tau_0}) = (x^n + 2) + (z^t) + (2) \text{ and } \bar{P}_{\tau_5 k} = (x^n, z^t, 2) \\ &P_{\tau_5} = (A_{\tau_6}) + (A_{\tau_3}) + (A_{\tau_2}) + (A_{\tau_0}) = (y^m + 2) + (z^t) + (2) \text{ and } \bar{P}_{\tau_5 k} = (y^m, z^t, 2) \\ &P_{\tau_7} = A \text{ and } \bar{P}_{\tau_7 k} = \bar{A}_k = (x^n, y^m, z^t, 2). \end{split}$$

A few observations.

- 1. The k-degree of $P_{\tau_2}, P_{\tau_4}, P_{\tau_6}$ and P_{τ_7} is (m-1), while the k-degree of P_{τ_1} and P_{τ_5} is (n-1), and the k-degree of P_{τ_3} is ∞ .
- 2. Each A_{\perp} is a k-ideal and has k-degree ∞ .
- 3. It is clear that for each $\tau \subseteq X$

k-degree $A \leq k$ -degree $P_{\tau} \leq k$ -degree A_{τ} .

4. $X \supseteq \tau_5 \supseteq \tau_3 \supseteq \tau_0$ and it follows that $A \supseteq P_{\tau_5} \supseteq P_{\tau_3} \supseteq P_{\tau_0}$ is a descending chain of ideals. Also $\overline{A}_k \supseteq \overline{P}_{\tau_k k} \supseteq \overline{P}_{\tau_k k} \supseteq \overline{P}_{\tau_k k}$ is a descending chain of k-ideals.

REFERENCES

 Louis Dale, Monic and monic free ideals in a polynomial semiring, Proc. Amer. Math. Soc. 56(1976), 45-50.

134

The Structure of Ideals in a Polynomial Semiring in Several Variables 135

[2] _____, Monic and monic free ideals in a polynomial semiring in several variables, Proc. Amer. Math. Soc. 61(1976), 209-216.

[3] _____, The k-closure of monic and monic free ideals in a polynomial semiring, Proc. Amer. Math. Soc. 64(1977), 219-226.

> The University of Alabama in Birmingham Birmingham, Alabama 35294 U.S.A.