THE STRUCTURE OF IDEALS IN A POLYNOMIAL SEMIRING IN SEVERAL VARIABLES

By Louis Dale

1. Introduction

In recent literature we have examined the structure of monic, monic free and k-ideals in a polynomial semiring. In this paper we extend this examination into polynomial semirings in several variables. We do this by investigating a class of polynomials, called saturated polynomials, that can be grouped together naturally to form ideals. It happens that these ideals form a basic structure for arbitrary ideals in a polynomial semiring in several variables. We develop a structure theorem for ideals and apply this theorem to monic, monic free and k-ideals.

Let S be a semiring with an identity and $x_{1}, x_{2}, \cdots, x_{n}$ be indeterminates which commute with each other and with each element of S. Then $S\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ is a semiring and a typical element of $S\left[x_{1}, x_{2} \cdots, x_{n}\right]$ is of the form $\sum a_{i_{1} i_{2} \cdots i_{n}} x_{1}^{i_{1}} x_{2}^{i_{2}}$ $\cdots x_{n}^{i_{n}}$ where $i_{1}, i_{2}, \cdots, i_{n}$ are nonnegative integers and $a_{i_{1} i_{2} \cdots i_{n}} \in S$. If we let $\alpha=$ $\left\{i_{1}, i_{2}, \cdots, i_{n}\right\}, \Phi=x_{1} x_{2} \cdots x_{n}, a_{\alpha}=a_{i_{1} i_{2} \cdots i_{n}}$ and $\Phi^{\alpha}=x_{1}^{i_{1}} x_{2}^{i_{2}} \cdots x_{n}^{i_{n}}$ then we can denote $\sum a_{i_{1} i_{2} \cdots i_{n}} x_{1}^{i_{1}} x_{2}^{i_{2}} \cdots x_{n}^{i_{n}}$ by $\Sigma a_{\alpha} \Phi^{\alpha}$. With this notation we call an ideal M in $S\left[x_{1}, x_{2}\right.$, $\left.\cdots, x_{n}\right]$ a monic ideal if $\Sigma a_{\alpha} \Phi^{\alpha} \in M$ implies $a_{\alpha} \phi^{\alpha} \in M$ for each α and an ideal F is called monic free if M is a monic ideal such that $M \subseteq F$, then $M=\{0\}$. An ideal B in a semiring S is called a k-ideal in S if $a \in B, c \in S$ and $a+c \in B$ imply $c \in B$. Finally we call a semiring S a strict semiring if $a, b \in S$ and $a+b \in S$ imply $a=b=0$. For this paper all semirings will be commutative and strict.

2. Saturated ideals

Consider an ideal A in a polynomial semiring $S\left[x_{1}, x_{2}, \cdots, x_{n}\right]$. We want to find a way to partition the elements of A in some natural arrangement. We will call a polynomial $f=\sum a_{\alpha} \Phi^{\alpha}$ in $S\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ saturated in $S\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ if either $f=0$ or each $x_{i} \in X=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ appears in some nonzero term of f. For example, the polynomial $f=3 x+6 x y+7 y z+5$ is saturated in $Z[x, y, z]$ but not
in $Z[w, x, y, z]$. If S is a strict semiring and f, g are saturated in $S\left[x_{1}, x_{2}, \cdots, x_{n}\right]$, then it is clear that $f+g, f g$ and any multiple of f are all saturated in $S\left[x_{1}, x_{2}\right.$, $\left.\cdots, x_{n}\right]$, i. e., the set S_{X} of all saturated polynomials in $S\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ is an ideal. Consequently, if A is an ideal in $S\left[x_{1}, x_{2}, \cdots, x_{n}\right]$, then $A_{X}=A \cap S_{X}$ is an ideal in $S\left[x_{1}, x_{2}, \cdots, x_{n}\right]$. Let $\tau=\left\{x_{1}{ }^{\prime}, x_{2}{ }^{\prime}, \cdots, x_{t}{ }^{\prime}\right\}$ be a subset of X. Then S_{τ} and $A_{\tau}=A \cap S_{\tau}$ are ideals in $S\left[x_{1}{ }^{\prime}, x_{2}{ }^{\prime}, \cdots, x_{t}{ }^{\prime}\right]$. If $\tau=\phi$, define $A_{\tau}=A \cap S$. Note that if $\tau \neq \delta$, then $A_{\tau} \cap A_{\delta}=\{0\}$. Thus every $f=\sum a_{\alpha} \Phi^{\alpha} \in A$ belongs to one and only one $A_{\tau^{*}}$ Consequently, any ideal A in $S\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ can be decomposed into a finite number of saturated subideals, i.e., $A=\bigcup_{\tau \subseteq X} A_{\tau}$ where A_{τ} is saturated in $S\left[x_{1}{ }^{\prime}, x_{2}{ }^{\prime}, \cdots, x_{t}{ }^{\prime}\right]$ and $A_{\tau} \cap A_{\delta}=\{0\}$ if $\tau \neq \delta$. Now A_{τ} is an ideal in $S\left[x_{1}{ }^{\prime}, x_{2}{ }^{\prime}, \cdots, x_{t}{ }^{\prime}\right]$ but not in $S\left[x_{1}, x_{2}, \cdots, x_{n}\right]$. However, A_{τ} generates an ideal $\left(A_{\tau}\right)$ in $S\left[x_{1}, x_{2}, \cdots\right.$, $x_{n}{ }^{7}$. This proves the following structure theorem.

THEOREM 2.1. If A is an ideal in $S\left[x_{1}, x_{2}, \cdots, x_{n}\right]$, then $A=\sum_{\tau \subseteq X}\left(A_{\tau}\right)$, where $A_{\tau} \cap A_{\delta}=\{0\}$ for $\tau \neq \delta$.

This decomposition in a sense partitions A into a sum of simpler ideals. The question now is how useful is this decomposition? We have one use in the following theorem.

THEOREM 2.2. An ideal A in $S\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ is monic free if and only if $\left(A_{\tau}\right)$ is monic free for each $\tau \subseteq X$.

PROOF. Suppose A is a monic free ideal in $S\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ and M is a monic ideal such that $M \subseteq\left(A_{\tau}\right)$. From $M \subseteq\left(A_{\tau}\right) \subseteq A$ it follows that $M=\{0\}$ and $\left(A_{\tau}\right)$ is monic free. Next suppose $\left(A_{\tau}\right)$ is monic free for each $\tau \subseteq X$ and M is monic such that $M \subseteq A$. Since M is monic we must have $a_{\alpha} \Phi^{\alpha} \in M$ for some $a_{\alpha} \in S$. Now $A=\bigcup_{\tau \subseteq X} A_{\tau}$ and it follows that $a_{\alpha} \Phi^{\alpha} \in A_{\tau}$ for some τ and consequently, $a_{\alpha} \Phi^{\alpha} \in\left(A_{\tau}\right)$. Since $\left(A_{\tau}\right)$ is monic free we must have $a_{\alpha}=0$ and consequently, $M=\{0\}$.

Therefore A is monic free.

3. The structure of monic and k-ideals

The decomposition of an ideal A in $S\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ given in theorem 2.1 is useful in dealing with monic free ideals but not useful in dealing with monic ideals or k-ideals. The elements in these ideals sometimes split into smaller
pieces. For if $f+g \in\left(A_{\tau}\right)$ we can make no claim concerning whether or not f or $g \in\left(A_{\tau}\right)$ using the fact that A_{τ} is saturated. Hence we need to alter our decomposition a bit to make it more useful. To do this let

$$
\tau=\left\{x_{1}^{\prime}, x_{2}{ }^{\prime}, \cdots, x_{t}{ }^{\prime}\right\} \subseteq X \text { and } P_{\tau}=\sum_{\delta \subseteq \tau}\left(A_{\delta}\right) .
$$

Now P_{τ} is an ideal in $S\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ and $A_{\tau} \subseteq P_{\tau}$.
THEOREM 3.1. If A is an ideal in $S\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ and $\tau \subseteq X$, then

$$
A=P_{\tau}+\sum_{\lambda \neq \tau} A_{\lambda}
$$

PROOF. It follows from theorem 2.1 that $A=\sum_{\tau \subseteq X}\left(A_{\tau}\right)$. But

$$
A=\sum_{\tau \subseteq X}\left(A_{\tau}\right)=\sum_{\delta \subseteq \tau}\left(A_{\delta}\right)+\sum_{\lambda \nsubseteq \tau} A_{\lambda}=P_{\tau}+\sum_{\lambda \unrhd \tau} A_{\lambda}
$$

This theorem in a sense factors the ideal A into two ideals P_{τ} and $\sum_{\lambda \neq \tau} A_{\tau}$. This factorization is not unique since $\tau \subseteq X$ is arbitrary. Thus we get a decomposition for A for each $\tau \subseteq X$.

THEOREM 3.2. If A is an ideal in $S\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ and $\tau, \lambda \in X$, then $P_{:} \cap P_{\lambda}=$ $P_{\tau \cap \lambda}$.

PROOF. Let f_{μ} be a polynomial in $P_{\tau} \cap P_{\lambda}$. Then $f_{\mu} \in A_{\mu}, f_{\mu} \in P_{\tau}$ and $f_{\mu} \in P_{\lambda}$ and it follows that $\mu \subseteq \tau$ and $\mu \subseteq \lambda$. Consequently, $\mu \subseteq \tau \cap \lambda$ and thus $f_{\mu} \in P_{\tau \cap \lambda}$. Hence $P_{\tau} \cap P_{\lambda} \subseteq P_{\tau \cap \lambda^{*}}$. Reversing the steps will show that $P_{\tau \cap \lambda} \subseteq P_{\tau} \cap P_{\lambda}$ and consequently, that $P_{\tau \cap \lambda}=P_{\tau} \cap P_{\lambda}$.

Now if $f+g$ is a saturated polynomial in P_{τ} we know that $f \in A_{\lambda_{1}}$ and $g \in A_{\lambda_{2}}$ for some $\lambda_{1}, \lambda_{2} \subseteq \tau$. Thus the structure of P_{τ} allows us to know that f or $g \in P_{\lambda}$. This property of P_{λ} allows us to prove the following.

THEOREM 3.3. An ideal A in $S\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ is monic if and only if P_{τ} is monic for each $\tau \subseteq X$.

PROOF. Suppose A is a monic ideal and $f=\Sigma a_{\alpha} \Phi^{\alpha} \in P_{\tau}$. Now $a_{\alpha} \Phi^{\alpha} \in A$ since A is monic. But $A=\bigcup_{\tau \subseteq X} A_{\delta}$ and it follows that $a_{\alpha} \Phi^{\alpha} \in A_{\lambda}$ for some $\lambda \subseteq X$. But $f \in P_{\tau}$ implies that $\lambda \subseteq \tau$. Hence $a_{\alpha} \Phi^{\alpha} \in A_{\lambda} \subseteq P_{\tau}=\sum_{\lambda \subseteq \tau}\left(A_{\lambda}\right)$ and it follows that P_{τ} is a
monic ideal. Conversely, suppose P_{τ} is monic for each $\tau \subseteq X$. Since $f \in A$ implies that $f \in A_{\tau} \subseteq P_{\tau}$ for some $\tau \subseteq X$, it follows that A must be monic also.

THEOREM 3.4. An ideal A in $S\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ is a k-ideal if and only if P_{z} is a k-ideal for each $\tau \subseteq X$.

PROOF. Suppose A is a k-ideal and $f, f+g \in P_{\tau}$. Since A is a k-ideal and $P_{\tau} \subseteq A$ it follows that $g \in A$. Now $A=\bigcup_{\delta \subseteq X} A_{\delta}$ and it follows that $g \in A_{\lambda}$ for some $\lambda \subseteq X$. But $f+g \in P_{\tau}$ implies that $\lambda \subseteq \tau$. Hence $g \in A_{\lambda} \subseteq P_{\tau}=\sum_{\lambda \subseteq \tau}\left(A_{\lambda}\right)$ and consequently, $\quad P_{\tau}$ is a k-ideal. Conversely suppose that P_{τ} is a k-ideal for each $\tau \subseteq X$ and $f, f+g \in A$. Now $f \in A_{\lambda_{1}}$ and $f+g \in A_{\lambda_{2}}$ for some $\lambda_{1}, \lambda_{2} \subseteq X$. Let $\tau=\lambda_{1} \cup \lambda_{2}$. Then $f, f+g \in P_{\tau}$ and since P_{τ} is a k-ideal it follows that $g \in P \subseteq A$ and A is a k-ideal.

It is interesting to note that an ideal A can be written $A=P_{\tau}+\sum_{\lambda \varnothing \tau}\left(A_{\lambda}\right)$ for each $\tau \subseteq X$. But P_{τ} is an ideal in $S\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ and we must be able to write $P_{\tau}=P_{\delta}+\sum_{\lambda \subseteq \delta}\left(A_{\lambda}\right)$. Thus $\delta \subseteq \tau \subseteq X$ and $P_{\delta} \subseteq P_{\tau} \subseteq A$. Consequently, if $X \supseteq \tau_{1} \supseteq \tau_{2} \supseteq \cdots$ $\supseteq \tau_{n}$ is a descending chain of subsets of X, then $A \supseteq P_{\tau_{1}} \supseteq P_{\tau_{2}} \supseteq \cdots \supseteq P_{\tau_{n}}$ is a descending chain of ideals. This fact and theorem 3.4 proves the following.

THEOREM 3.5. If A is an ideal in $S\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ and $X \supseteq \tau_{1} \supseteq \tau_{2} \supseteq \cdots \supseteq \tau_{n}$ is a descending sequence of subsets of X, then $A \supseteq P_{\tau_{1}} \supseteq P_{\tau_{2}} \supseteq \cdots \supseteq P_{\tau_{\pi}}$. Further, if A is a k-ideal, then each $P_{\tau i}$ is a k-ideal.

The ideals $\left(A_{\tau}\right)$ and P_{τ} may look similar but they are very different. $\left(A_{\tau}\right)$ may be monic free while P_{τ} is monic and $\left(A_{\tau}\right)$ be a k-ideal while P_{τ} is not.

4. Weak k-ideals and k-closures

It is well known that every ideal in a semiring is not a k-ideal but every ideal is contained in a k-ideal. Let A be an ideal in a semiring S. The ideal

$$
\bar{A}_{k}=\cap\{B \mid B \text { is a } k \text {-ideal and } B \cong A\}
$$

is called the k-closure of A. It is clear that \bar{A}_{k} is the "smallest" k-ideal containing A. We call an ideal A in $S_{-}\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ a weak k-ideal if there is an integer n such that A is a k-ideal with respect to all polynomials in A with degree less than or equal to n. The largest such integer is called the k-degree of A. If no such integer exists then A is said to have k-degree ∞. Now if A is an ideal in $S\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ and n is a fixed integer let

$$
A_{f_{n}}=\{f \mid f \in A \text { and degree } f \leq n\}
$$

The ideal
$\bar{A}_{k_{n}}=\cap\left\{B \mid B\right.$ is a weak k-ideal with k-degree at least n and $\left.A_{f_{n}} \subseteq B\right\}$ will be called the weak k-closure of A.

We now apply these concepts to saturated polynomials. If A is an ideal in $S\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ let

$$
A_{\tau f_{n}}=A_{\tau} \cap A_{f_{n}}
$$

Thus $A_{\tau f n}$ is the set of all polynomials in A saturated in $S\left[x_{1}{ }^{\prime}, x_{2}{ }^{\prime}, \cdots, x_{t}{ }^{\prime}\right]$ with degree less than or equal to n. It is clear that $A_{f_{n}}=\bigcup_{\tau \subseteq X} A_{\tau f_{n}}$. Now we have $A=\bigcup_{n} A_{f_{n}}$ and from section 2 we have $A=\bigcup_{\tau \in X} A_{\tau}$. Hence

$$
A=\bigcup_{n} A_{f_{n}}=\bigcup_{n}\left\{\bigcup_{r \subseteq X} \bar{A}_{\tau f_{n}}\right\}
$$

We will denote the weak k-closure of the ideal $\left(A_{\tau}\right)$ by $\overline{\left(A_{\tau}\right)} k_{n}$ and the k-closure of A_{τ} by $\overline{\left(A_{\tau}\right)_{k}}$.

THEOREM 4. 1. If A is an ideal in $S\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ then $\bar{A}_{k}=\sum_{\tau \subseteq X} \overline{\left(A_{\tau}\right)_{k}}$.
PROOF. From theorem 2.1 we have $A=\sum_{\tau \subseteq X}\left(A_{\tau}\right)$ where $A_{\tau} \cap A_{\delta}=\{0\}$ for $\tau \neq \delta$. Since \bar{A}_{k} is an ideal in $S_{[}\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ we have $\bar{A}_{k}=\sum_{\tau \subseteq X}\left(\bar{A}_{k}\right)_{\tau^{*}}$. Now $\left(A_{\tau}\right)$ is an ideal in $S\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ and $\overline{\left(A_{\tau}\right)_{k}}$ is the smallest k-ideal containing $\left(A_{\tau}\right)$. Also $\left(\bar{A}_{k}\right)_{\tau}$ is a k-ideal in $S\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ containing $\left(A_{\tau}\right)$ and $\overline{\left(A_{\tau}\right)_{k}}$. Since \bar{A}_{k} is the smallest k-ideal containing A it follows that $\left(\bar{A}_{k}\right)_{\tau}$ is the smallest k-ideal containing $\left(A_{\tau}\right)$. Consequently, $\left(\bar{A}_{k}\right)_{\tau}=\overline{\left(A_{\tau}\right)_{k}}$ and it follows that $\Sigma\left(\bar{A}_{k}\right)_{\tau}=\Sigma \overline{\left(A_{\tau}\right)_{k}}$ and hence $\bar{A}_{k}=\sum_{\tau \subseteq X} \overline{\left(A_{\tau}\right)_{k}}$.

COROLLARY 4.2. If A is an ideal in $S\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ then $\bar{A}_{k}=\overline{\left(P_{\tau}\right)_{k}}+\sum_{\lambda \neq \tau} \overline{\left(A_{\tau}\right)_{k}}$.
PROOF. Theorem 4.1 assures that

$$
\bar{A}_{k}=\sum_{\tau \geq X}{\overline{\left(A_{\tau}\right)}}_{k}=\sum_{\delta \subseteq \tau}{\overline{\left(A_{\delta}\right)}}_{k}+\sum_{\lambda \Sigma \tau}{\overline{\left(A_{\lambda}\right)}}_{k}={\overline{\left(P_{\tau}\right)}}_{k}+\sum_{\lambda=\tau}{\overline{\left(A_{\lambda}\right)}}_{k} .
$$

5. Example

Let $A=\left(2, x^{n}+2, y^{m}+2, z^{t}\right), n>m>t>1$, be an ideal in $Z^{+}[x, y, z]$. Now A is a weak k-ideal of degree $(m-1)$. To see this we check the basis elements of A and note that $y^{m}+2,2 \in A$ but $y^{m} \oplus A$. Thus A is not a k-ideal. Now any polynomial in y of degree $(m-1)$ or less is of the form $2 \sum a_{i} y^{i}$ and A is certainly
a k-ideal with respect to these polynomials since $2 a_{i} y^{i} \in A$. Similarly, A is a k-ideal with respect to all polynomials in x of degree ($n-1$) or less, and A is a k-ideal with respect to all polynomials in z. Since $n>m,(n-1)>(m-1)$ and it follows that A is a weak k-ideal with k-degree $(m-1)$. Now let us partition A into saturated polynomials. Let $\tau_{0}=\phi, \tau_{1}=\{x\}, \tau_{2}=\{y\}, \tau_{3}=\{z\}, \tau_{4}=\{x, y\}$, $\tau_{5}=\{x, z\}, \tau_{6}=\{y, z\}, \tau_{7}=\{x, y, z\}=X$.
Then the saturated ideals are

$$
\begin{aligned}
& A_{\tau_{0}}=(2), \quad A_{\tau_{1}}=\left(x^{n}+2\right) \subseteq Z^{+}[x], A_{\tau_{2}}=\left(y^{m}+2\right) \subseteq Z[y], \\
& A_{\tau_{3}}=\left(z^{t}\right) \subseteq Z^{+}[z], A_{\tau_{4}}=\left(x^{n}+y\right)+\left(y^{m}+2\right) \subseteq Z^{+}[y, z], \\
& A_{\tau_{5}}=\left(x^{n}+2\right)+\left(z^{t}\right) \subseteq Z^{+}[x, z], A_{\tau_{6}}=\left(y^{m}+2\right)+\left(z^{t}\right) \subseteq Z\left[y, z^{\prime},\right. \\
& A_{\tau_{7}}=\left(x^{n}+2\right)+\left(y^{m}+2\right)+\left(z^{t}\right) \subseteq Z^{+}[x, y, z] .
\end{aligned}
$$

Now

$$
\begin{aligned}
& P_{\tau_{0}}=\left(A_{\tau_{0}}\right) \text { and } \bar{P}_{\tau_{0} k}=\left(A_{\tau_{0}}\right), \\
& P_{\tau_{1}}=\left(A_{\tau_{1}}\right)+\left(A_{\tau_{0}}\right)=\left(x^{n}+2\right)+(2) \text { and } \bar{P}_{\tau_{1} k}=\left(x^{n}, 2\right) \\
& P_{\tau_{2}}=\left(A_{\tau_{2}}\right)+\left(A_{\tau_{0}}\right)=\left(y^{m}+2\right)+(2) \text { and } \bar{P}_{\tau_{2} k}=\left(y^{m}, 2\right) \\
& P_{\tau_{3}}=\left(A_{\tau_{3}}\right)+\left(A_{\tau_{0}}\right)=\left(z^{t}\right)+(2) \text { and } \bar{P}_{\tau_{3} k}=P_{\tau_{3}} \\
& P_{\tau_{4}}=\left(A_{\tau_{4}}\right)+\left(A_{\tau_{1}}\right)+\left(A_{\tau_{2}}\right)+\left(A_{\tau_{0}}\right)=\left(x^{n}+2\right)+\left(y^{m}+2\right)+(2) \text { and } \bar{P}_{\tau_{4} k}=\left(x^{n}, y^{m}, 2\right) \\
& P_{\tau_{5}}=\left(A_{\tau_{5}}\right)+\left(A_{\tau_{3}}\right)+\left(A_{\tau_{1}}\right)+\left(A_{\tau_{0}}\right)=\left(x^{n}+2\right)+\left(z^{t}\right)+(2) \text { and } \bar{P}_{\tau_{5} k}=\left(x^{n}, z^{t}, 2\right) \\
& P_{\tau_{6}}=\left(A_{\tau_{6}}\right)+\left(A_{\tau_{3}}\right)+\left(A_{\tau_{2}}\right)+\left(A_{\tau_{0}}\right)=\left(y^{m}+2\right)+\left(z^{t}\right)+(2) \text { and } \bar{P}_{\tau_{6} k}=\left(y^{m}, z^{t}, 2\right) \\
& P_{\tau_{7}}=A \text { and } \bar{P}_{\tau_{7} k}=\bar{A}_{k}=\left(x^{n}, y^{m}, z^{t}, 2\right) .
\end{aligned}
$$

A few observations.

1. The k-degree of $P_{\tau_{2}}, P_{\tau_{4}}, P_{\tau_{6}}$ and $P_{\tau_{7}}$ is $(m-1)$, while the k-degree of $P_{\tau_{1}}$ and $P_{\tau_{5}}$ is $(n-1)$, and the k-degree of $P_{\tau_{3}}$ is ∞.
2. Each A_{τ} is a k-ideal and has k-degree ∞.
3. It is clear that for each $\tau \subseteq X$
k-degree $A \leq k$-degree $P_{\tau} \leq k$-degree A_{τ}.
4. $X \supseteq \tau_{5} \supseteq \tau_{3} \supseteq \tau_{0}$ and it follows that $A \supseteq P_{\tau_{5}} \supseteq P_{\tau_{3}} \supseteq P_{\tau_{0}}$ is a descending chain of ideals. Also $\bar{A}_{k} \supseteq \bar{P}_{\mathrm{r}_{5} k} \supseteq \bar{P}_{\mathrm{r}_{3} k} \supseteq \bar{P}_{\mathrm{r}_{0} k}$ is a descending chain of k-ideals.

REFERENCES

[1] Louis Dale, Monic and monic free ideals in a polynomial semiring, Proc. Amer. Math. Soc. 56(1976), 45-50.
[2] \qquad , Monic and monic free ideals in a polynomial semiring in several variables, Proc. Amer. Math. Soc. 61(1976), 209-216.
[3] \qquad , The k-closure of monic and monic free ideals in a polynomial semiring, Proc. Amer. Math. Soc. 64(1977), 219-226.

The University of Alabama in Birmingham Birmingham, Alabama 35294 U.S.A.

