
Kyungpook Math. J 
Volume 26 , Number 2 
December. 1986 

THE STRUCTURE OF IDEALS 1:-1 A POLYI\OMIAL SEMIRE\G 

IN SEVERAL VARIAßLES 

ßy Louis Dale 

1. Introduction 

In recent literature we have examined the structure of monic, monic free 

and k- ideals in a polynomial semiring. In this paper we extend this e.‘ amination 
into poJynomial semirings in several variables. ",.le do this by investigating a 

c1ass of polynomials. called saturated polynomials. that can be grou야d together 

naturally to form ideal s. Jt happens that these ideals form a basic structure 

for arbitrary ideaJs in a polynomial semiring in several variables. We develop 

a structure theorem for ideal s and apply this theorem to monic, monic free 

and k- ideals. 

Let S be a semirin~ with an identity and .1:1' .1:2' ''', X n 
야 indeterminates which 

commute with each other and with each element of S. Then S~X" X?I "', xJ is l ’ 2’ n' 

a semiring and a typical element of S [x 1, x 2, • • ,Xn ] is of 뼈 form EtIl lli 꾀강 

---x; 빼ere "I , i2, ... , 사 are nonmgatlve integers and alj1i l·gS 1f ” e let a = 

{i., i ." ... , i_ }, ø = x ,X ‘ X_ , a_ = a .. and øa= x'.lx~J .. . x~ .• then we can denote l ’ 2’ ,," - -1-2 -,, ' -a '112 ... ' . - 1-2 
I;at"

l
i

2 꺼IX'; ... X~. by 'Za/þa. With this notation we call an ideal 1)1 in S :x
1
, X2’ 

- , Zn] a momC ldeal lf Zaa@aEAI lmplles aaφ'EM for each a and an ideal F is 

called mOllic free if M is a monic ideal such that M드F. then M = {O). An ideal 

B in a semiring S is called a • ideal in S if aEB. cES and a+cEB imply cEB. 

Fina l1y we ca l1 a semiring S a slr;cl semiring if a. hεS and a + bES imply 

a=b=O. For this paper all semirings will 야 commutative and strict 

2. Saturated ideals 

Consider an ideal A in a polynomial semiring Slx1’ X
2’ ,x"J. \\'e wan t to 

find a way to partition the elements of A in some natural arrangemen t. We 

will call a p이ynomial f = "L. a.Ø' in S [x 1• x 2’‘ ,.1:"J saturated in S [x 1,x 2 
•.. . ,x

tl
J if 

el‘her / = 0 or each x ,.EX= {X1• X2' 
' .. , x ,,} appears in ∞.me nonzero term of f For 

example. the p이ynomial f = 3x+ 6xy+ 7y% + S is saturated in Z [x .y. zJ but not 
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ìn Z [w. x ,y , z] ‘ Jf S is a strict semiring and f.g are saturated in S[.x
j 

• .x2 
• ..•• .xnJ . 

then it is c1ear that f + g. fg and any multiple of f are all saturated in S [.x, • .x
2’ 

‘ . X n]' i. e.. the sel S x of all saturated p이ynomiaJs in S [x! , X
2

' "', Xn] is an 

idea l. Consequently. if A is an ideal in S [x
j ’

Xz' "', x n], then AX=A n s X is an 

ideal in S [x
j

• X2’ 
.XnJ. Let r={x/ , x z'. ''', x t ’ l k a subset of X Then Sr and 

A,= A n s , areideals in S[x,' .. r; • ... • x,'l . lf <= </>. define A,= AnS. Note that if 

<* ð. then A, n A,={ O). Thus every f= J:，a"φ"EA belongs to one and only one 

A
f"' 

Consequently, any ideal A in S [X
1
, X2, ''', Xn J can be decomposed into a 

finite number of saturated subideals. i. e. . A = U A_ where A is saturated in 
t드X“ 

S [x/.x; •...• x ,'l and A, n A,= {OI if ,* iJ . Now A, is an ideal in S [X/ ,X2’, ‘’ ,.1/] 
but oot in S i:x 

1’ 
X2' 

... • . "tn]. However, A
t' 

generates an ideal (Ar) in S [X
1
, X2, "', 

X n' . This proves the following structure theorem 

THEOREM 2. 1. If A is an ideal in S[x •• ι. "', ;t..J. then A=ε그(A). where 
ι ‘ ,c ‘ 

-
A, n A,= {O) f or FFÒ 

This decomposition in a sense partitions A into a sum of simpler ideals. The 
question now is how useful is this decomposition? We have one use in the 

following theorem 

THEOREM 2. 2. An ideal A in S [x
j ' 

x
2 •

• . . • xnl is monic free if and only if (A , ) 

IS montc 끼ree 
“
for each r드X. 

PROOF. Suppose A is a monic free ideal in S [x ,. x 2’ , Xn] and 111 is a monic 

ideal such that M드 (A.). From MÇ(A.)ζA it follows that 111= {O) and (A.) is ,.-
m。nic free Next suppose (Ar) is monlC free for each r드X and M is monic 

such that M드A. Since /11 is monic we must have aaØaE /o.1 for some aaES. Now 

A= U A_ and it follows that aJrtεA_ for some < and consequently. a-,P"E(A) 
r드X r a' r 

SInce (Ar) is m。nlC free we must have %= O and consequently- M= lOl 

Therefore A is monic free 

3. The structure of monic and k- ideals 

T he decomposition of an ideal A in S [x
j

• x 2’ " Xn] given in theorem 2. 1 is 

useful in dealing with monic free ideals but not useful in dealing with monic 

:ideals or k- ideals. The elements in these ideals sometimes split into smaller 
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pieces , For if I+gε (A ,,) we can make no claim concerning whether or not 

1 or gE(A.J using the fact that A. is saturated , Hence we need to aller Our , 
decomposilion a bil to make it more usefuL To do this let 

r = {x,’ ,x
2
' , .... x/}드X and P，=ε: (A.) 

a드r ’ 

Now P. is an ideal in S[x
1

• X
2

' "', X n] and Ar드P， 

THEOREM 3, L 11 A is an ideal in S [x" x ,. "', xJ alld r~X， then ----- -.- ~ L-l ’ 2' '-n .J _ .. -

A = P. + r:: A , 
' St' ‘ 

PROOF, Jt follows from theorem 2,1 that A = ε:(AJ ， Bul ,c x 
A=ε(AJ=ε(A，) + r:: A ,=P. +ε A ， ,ç x ‘ ð.Ç. l <Zr ‘ ‘ '1<'‘ 

This theorem in a sense factors the ideal A into two ideals P. and r:: A. , This 
' St' ‘ 

factorization is not unique since t'드X is arbitrary , Thus we get a decomposition 

for A for each r드X 

THEOREM 3,2, 11 A is an ideal in S [x"x2, ""xnl and r ,ÀEX, Ihen p, n p ,= 
p.nÀ 

PROOF , Let f,‘ te a polyn。mial ln pr n pr Then jFAμ’ ιεpr and j;‘EPι 

and it follows that μ드r and "드À. Consequently, "드r n À and thus !.EP 
Jμ . nr 

Hence p， n p，드P， n l' Reversing the sleps will show that P， n ，~p， n p， and 

consequently, that P,n,= p,n p, 
Now if I+g is a saturaled p이ynomial in P. we know that fiεA ÀI and g E A À2' 

for some À" À 2드τ Thus the structure of 껴 allows us to know lhat lor 

gE껴， This pro야rty of P, allows us to prove the following, 

THEOREM 3,3, An ideal A in S [x" ,T2’ 
‘ , xn] lS ”

tonic lf a ,,d only If Pr lf 

mO l1 ic for each t'드X 

PR∞F， Suppose A is a monic ideal and I= Za.ø
a

εR- Now aa@aε11 sin∞ A 

is monic , But A = \,} _A. and it follows that a.Ø.EA, for some À~X， But IE간 
t드x' 

implies that À드t Hence aa〈fεA，드p.= r:: (A ,) and it follows that P. is a. 
ArAc=rA 
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monlC ldeal Conversely, supp。se R lS monk for each r드X. Since f EA implies 

that fEr\，드Pr for some t"드X. it foll。、、 s that A must be monic al50. 

THEORE1f 3.4. J\n ideal A in S=x
1
, X

2
' ''', x ,. ] is a k- ideal if and only if Pr is 

a k-ideal for each t"드χ 

PROOF. Suppose iI is a k- ideal and ιf+gEP，. Since A is a k- ideal and 

간ç;;i1 it follows that gE !I. Now A= .y~A， and it follows that gEAλ for some 
6ζX ‘ 

2드 X:. But f +gEP, implies that J.드r. Hence gE111드간=ε(A，) and consequent. 
jζr 

Iy. 간 is a k- idea l. Conversely suppose that P, is a k-ideal for each ，드X and 

f ,f+gEA. Now fEA" and f+gεA" for 50me J.,.J. 2ç;;X. Let , =J., U J.
2
• Then 

f，f~g략 and Sl I1Ce f: lS a k- ideal it follows that gεP드A and A is a k- ideal ‘ 

It is interest ing to note that an ideal , \ can be written A = P. +ε(시 for 
'1", ‘ 

each r드X. But Pr is an ideal in SlX1,x2’ 
. x.l and we must be able to write 

P,= P,+Ç. (A,). Thus ð드;ç;;x and P，드P，드I\. Consequently. if χ므 .. l;2r 2극 
Aιa 

극". is a descending chain of subsets of X. then A므P. 극P. 므· 극P_ is a 
“ “ ‘· descending chain of ideals. This fact and theorem 3.4 proves the following 

THEORDI 3.5. lf iI is all ideal in S:.~ ， . x 2 • •••• x. l and X;;2" 극'2극 ·극rn ts a 

descending sequtnce of subset s 01 X, lhen 11므Pn극P"극·‘·극P，.’ Further, ’f A is a 

k-ideal ‘ then each P_ is a k- ídeal 
r ‘ 

Tl1e ldeals (/lr) and Pr may look Simlar but they are very dlfferent (Ar) 

may l￡ monk free whlle Pr lS monlc and (Ar) be a k- ideal while pr lS n。t

4 “!eal‘ k- ideals and k-closures 

It is well known that every ideal in a semiring is not a k- ideal but every 

ideal is contained in a k- idea l. Let A 야 an ideal in a semiring S. The ideal 

.ï. = n {BI B is a k-idea l and B.드A) 

is called the k-c1osure of !I. It is clear that Ã k is the “ smallest" k- ideal contain­

ing A. \i'/e call an ideal 11 in S=x
1
, X

2
' .", X셔 a weak k- ideal if there is an integer 

n such that iI is a k- ideal with respect to all polynomials in A with degree less 
than or equal to n. The largest such integer is called the k- degree of fI. If no 

.such integer exists then A is said to have k-degree ∞ N。、v jf A is an ideal in 

S:X1, x2' ... , .1:,. ] and 11 is a fixed integer let 
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i\r. = Iflf EA and degr않 f s;,nJ 

The ideal 
A

Ie
.= η {B B is a 、.veak k- ideal with k degree at least n and i\r.';;;BJ wi l! be 

ca l!ed the 、:\TeaJ‘ k-c1osure of A 

、，\"e now apply these concepts to saturated p이ynomials. If A is an ideal in 

•. TJ let 
l ’ 2’ 

A., = i\.nfl 1:/.-~ 'r l 1"/. 

Thus Arf. lS tl1e set of all p。lynomlalS In A saturated ln s-z/, x2’ ..... x/J with 

degree less than Or equal to 11. lt is c1ear that Ar. =_:}y' \,r. ‘ N。、，v we have 
‘=~ 

i\= J ι-\r and from section 2 we have A= U .. 1... Hence 
n J. r드X ‘ 

I1=U A , =U{ U A.,} 
n J " n r Ç; X "" 

、\"e wi l! denote the weak k-c1osure of the ideal (A ,) by (A , )k. and the k c10sure 

。f 11, by (i\，)ι 

TH[ORE~1 4. 1. 11 il Îs all ideal ;11 S [x1.x? ...• ζ thell Ã ‘ = C(AJ , 
“ “ ’ r~X “ 

PROOF. From theorem 2. 1 we have 11 = C(ιlJ where lI.nl1.= {O} for r 7'= ð. 
r -= X ‘ V 

Since X k is an ideal in 원1 x 2' •..• ζJ we have A.늑될(A.) ， Now ('\,) is an 

ideal in S노l ， 12” In] and mJk is llie smallest k ldeal comalrung (싸) . Also 

(싸)， is a k- ideal in S:~.j ’ X，’ ’J폐x카띄”셔J COIl삐mn매n때1밍g (ν“씨11까샤\，ψ，) and 깐1π •. Since IIk is the 

sma l!est k- ideal containing A it lo l!ows that (11.) , is the sma l!est k ideal con­

taining (A,). Consequently. (자) ，= (까). and it 1이lows that L; (자)t=S끼낀 and 

hence 11 ，=ε:uu ‘ 
，드x . ‘ 

COROLLARY 4.2. If , \ is an ideal in S [xj.x, . . ... xn1 , hen 카=한끄+ε마끄. 
l ;;:, 

FROOF‘ Theorem 4. 1 assures that 

Ã，=L:김j，= [二끼그‘ +Cτη‘=규]‘ +C찌3‘ 
‘ r ;' X ð드， … 1Zr ‘ l;:"r ‘ ” 

5. Example 

Let i\= (2. 감+ 2. ym + 2. z'). n>III>'>1. 냉 an ideal in Z+ [x.Y. zJ . Now A 

is a weak k- ideal of degree (m- l). To see this we check the basis e lements 

of A and note that jl’. + 2. 2EA but y"’흩A. Thus A is not a k- idea l. Now any 

polynomial in y 01 degree (m-I) or less is of the form 2 L;a;y’ and A is certainly 
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o k- ideol with respect to these polynomiols since 2 aρlεA. Similorly, A is a­

k- ideol with respect to 011 polynomiols in x of degree (n - I) or less, and A is 

o k- ideol w ith respect to 011 polynomials in z. Since n> m , (n- l) > (m-l) and 

it follo ,,"s that .1 is a weak k- ideal with k-degree (m - I ) . Now let u s partition 

A into saturated polynomials. Let 'o=tþ, ', ={x/ , ,,={y /, '3= {zl , 다= (x ,y) , 
T

S
= {X, z }, Z' 6= {y ,.z}, Z'7= {x,y ,.::) = X. 

Then the saturated ideaJs are 

N。、v

Arp= (2) , /1η= (x’+ 2) <;;Z+ [x] ， A，，= (y"’ + 2) 드Z [y] ， 

fl_ = (z')드Z+ [z ], fl. = (x’ +y )+ (ym+ 2)드Z+ [y， z] ， 
‘ i “ 

Afs= (1”+ 2) +(:t)드Zf [I ,:] , Ar.=(ym+2) + (zt) 드Z [y， 김， 
t\ ,--,",,+ il. = (x" + 2) + (ym + 2) + (z') 드ι [x ,y , z ] 

‘’ 

Pro= (Aro) and Pqk= (Ar。) , 

Pr = (Atl) + (Aro) = (1” + 2) + (2) and Prlk= (xn, 2) 
q q 

P = (/1t2) + (Ato) = (y’”+ 2) ÷ (2) and Frzk= (ym, 2) 
" 

Pr3= (Ari) ÷ (Aro) = (zt) + (2) and PrIk= Pr3 

P，‘ =(11η) + (Atl) + (Arg) ÷ (Ar@) = (1”+ 2) + (1” + 2) + (2) and Pnk= (1”, ym, 2) 

Prs: (Ars) ÷ (Aη) + (Afl) - (Ar,) = (1n+ 2) + (:t) + (2) and Prsk= (1n, 김， 2) 

p_ = (A. ) + UU + Ul.) + (A.J = (y’ + 2) + (z')+(2) and P. ‘ = (ym , 김， 2) 
‘ a ‘g ‘ l “ ‘。“

Pr?=A and Pf,k= Xk= (z”,y”‘• Zl , 2) 

A few observations 

l The k-degree 。f Pr!‘ P,‘, pt6 and Pt? is (m - 1) , whlle the k-degree 。i

pn and Pti 1S (R 1) , and the k-degree of Pη is ∞. 

2. Each 11, is a k- ideal ond has k-degree ∞ 

3. Jt is c1ear that for each ，드X 

k-degree AS k-degree P ,S k-degree 11,‘ 

4. X극TS극'3극'0 and it follows that A극P"므Pr3극Pro IS a descendlI1g cham Of 

ideals. Also fl k극Pf싸깅Pr，k극Frok lS a descendlIlg chain 。f kldeals, 
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