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IDEMPOTENT MATRIX PRESERVERS OVER BOOLEAN
ALGEBRAS

SEOK-ZUN SoNG, KYUNG-TAE KANG™, AND LEROY B. BEASLEY

ABSTRACT. We consider the set of n X n idempotent matrices and we
characterize the linear operators that preserve idempotent matrices over
Boolean algebras. We also obtain characterizations of linear operators
that preserve idempotent matrices over a chain semiring, the nonnegative
integers and the nonnegative reals.

1. Introduction

One of the most active and fertile subjects in matrix theory during the past
one hundred years is the linear preserver problem, which concerns the char-
acterization of linear operators on matrix spaces that leave certain functions,
subsets, relations, etc., invariant. Although the linear preservers concerned are
mostly linear operators on matrix spaces over some fields or rings, the same
problem has been extended to matrices over various semirings ([1]-[10]).

Chan et al. [6] showed that if T" is a linear operator on the real (or complex)
n X n matrices that preserve idempotent matrices and fixes the identity matrix,
then there exists an n x n invertible real (or complex) matrix U such that either

(1.1) T(X)=UXU"!
or
(1.2) T(X)=UX'U™?

for all n x n real (or complex) matrix X, where X* denotes the transpose of X.
Beasley and Pullman [3] extended the results of Chan et al. [6] by removing
the condition that the operator fixes the identity matrix.

In this paper, we will characterize the linear operators that preserve idem-
potent matrices over Boolean algebras and related semirings. In Section 2,
we list some fundamental concepts and preliminary Lemmas. In Section 3,
we characterize the linear operators that preserve idempotent matrices over
the binary Boolean algebra and related semiring (see Theorems 3.1, 3.3 and
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Corollary 3.2). In Section 4, we give a linear operator preserving idempotent
matrices which is neither a form (1.1) nor (1.2) (see Example 4.4). Also we
have a characterization of linear operators that preserve idempotent matrices
over general Boolean algebras (see Theorem 4.5).

2. Preliminaries

A semiring S consists of a set S and two binary operations, addition (+)
and multiplication (), such that:

) (S, +) is a commutative monoid with identity element 0;
) (S, -) is & monoid with identity element 1;

¢) multiplication is distribute over addition on both side;
d) s0 =0 =0s for.all s €S.

Usually S denotes both the semiring and the set. A semiring S is called
commutative if the monoid (S,-) is commutative; S is called antinegative if
a+b =0 implies a = b =0 for any a,b €S.

Here are some examples of semirings which occur in combinatorics. They are
all commutative and antinegative. For a fixed positive integer &, let By be the
Boolean algebra of subsets of a k-element set Sy and 04,09, ..., 0% denote the
singleton subsets of S;. Union is denoted by + and intersection by juxtaposi-
tion; 0 denotes the null set and 1 the set Sg. Under these two operations, By is
a semiring; all of its elements, except 0 and 1, are zero-divisors. In particular,
if K = 1, By is called the binary Boolean algebra.

Let K be any set of two or more elements. If K is totally ordered by <«
(i.e., z < y or y < z for all distinct elements z,y in K), then define z + y as
max(z,y) and zy as min(z,y) for all z,y € K. If K has both a universal lower
bound and a universal upper bound, then K becomes a semiring, and called a
chain semiring. In particular, if F is the real interval [0, 1], then (F, max, min)
is a semiring, the fuzzy semiring.

If P is any subring of the reals R under usual addition and multiplication,
then P, the nonnegative part of P, is a semiring. In particular, Z, is the
semiring of all nonnegative integers.

Algebraic terms such as unit, zero divisor and invertibility are defined for
semirings as for rings.

Hereafter, S denote an arbitrary semiring which is commutative and antineg-
ative.

Let M, (S) denote the set of all n x n matrices over a semiring S. Then x n
identity matrix, I,,, and the n X n zero matrix, O,, are defined as if S were a
field. We denote the n x n matrix all of whose entries are 1 by J,.

We define * : M, (S) — Mn(B1) by X* = [z};] for all X = [z;;] € M (S),
where z}; = 1 if and only if z;; # 0. Then * is a semiring homomorphism when
S has no zero divisor.
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Lemma 2.1. Let S be a semiring without zero divisors. Then a matriz X =
[@i5] € M, (S) is invertible if and only if X* € M,,(B1) is a permutation matriz
and all nonzero entries of X are units.

Proof. Suppose that X = [z;;] € M,(S) is invertible. Then X* is an invertible
binary Boolean matrix, and hence it is a permutation matrix. It follows from
the invertibility of X that all nonzero entries of X are units. The converse is
immediate. O

Let E, = {E;;|i,j = 1,...,n}, where E;; is the n x n matrix whose (4, 7)*®
entry is 1 and whose other entries are 0. We call each member of E,, a cell.
When i # j, we say E;; is an off-diagonal cell; E;; is a diagonal cell. A line is
a row or a column of a matrix. A set of cells is collinear if they are all in the
same line.

The following proposition is an immediate consequence of the rules of matrix

multiplication.

Proposition 2.2. For two cells E;; and E,; in E,, we have E;;E,., = E;; or
Oy according as j =7 or j £ 7.

Let D,(S) = {4 € M,(S)| A? = A}. We call each member of D,,(S) an
idempotent matriz. Then we can easily show that all diagonal cells are idem-
potent but all off-diagonal cells are not idempotent. Furthermore, any sum of
distinct diagonal cells is idempotent.

Lemma 2.3. Suppose that E is a diagonal cell and E,, Ey are distinct off-
diagonal cells. Then their sum is idempotent if and only if they are collinear.

Proof. 1t is an easy exercise. g

A mapping T : M, (S) — M,(S) is said to be a linear operator on M,,(S)
if T(s1X1 + s2X2) = s1T(Xy) + $2T(X3) for all Xy, Xz in M, (S) and for all
81,82 in S. A linear operator 7" on M, (S) is said to be a preserver of D,,(S) (or
T preserves idempotent matrices) if T{X) € D,(S) whenever X € D, (S).

If A = [a;;] and B = [b;;] are matrices in M., (S), we shall use the notation
A > B(or B < A) if b;; # 0 implies a;; # 0 for all ¢ and j. This provides a
reflexive and transitive relation on M, (S). If A and B are matrices in M, (S)
with A > B, it follows from the linearity of T that T'(A) > T(B) for any linear
operator T' on M, (S).

Lemma 2.4. Let S be a semiring, and let T be a linear operator on M, (S).
Then T is invertible if and only if there exist a permutation o on the set
{(t,4) 4,7 = 1,...,n} and unit elements b;; € S, 3,5 = 1,...,n such that
T(Eij) = bij Ea(i,j)-

Proof. Suppose that T is invertible on M,(S). Let E;; be any cell in E,. By
invertibility of T, there exists at least one cell E,, € E, such that T(E;;) > E,.
Thus we have E;; > T~'(E,,) because 77! is also linear. This implies that
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T~Y(E,s) = zE;; for some nonzero scalar ¢ € S, equivalently F., = zT(E;;),
equivalently T(F;;) = b;jE,s for some nonzero scalar b;; € S. Since E;; is
an arbitrary cell, T' permutes E, with nonzero scalar multiplication. That
is, there exists a permutation « on the set {(¢,7)[%,7 = 1,...,n} such that
T(E;;) = bij Eqa(,;) for some nonzero scalar b;j, 1,5 = 1,...,n.

We now need to show that the b;; are all units. Since T is surjective and
T(E.s) £ Euq, ) for (r,s) # (i,7), there is some nonzero scalar x in S such
that T(xE;;) = Ey(; j)- Then we have that T(xE;;) = 2T(Ey;) = 2bij Eoi5) =
Es(i,j) because T is linear. That is, zb;; = 1, and hence b;; is a unit.

The converse is immediate. a

The Schur (or Hadamard) product, Ao B in M, (S) is defined by Ao B =
[a; bij)-
Lemma 2.5. For a semiring S without zero divisors, let T be an invertible
linear operator on M, (S) that preserves D, (S). Then
(a) T(I) =1;
(b) there exist a permutation matrizc P and a matriz B = [b;;] such that
T(X) = P(XoB)P* for all X € Mo (S) or T(X) = P(X*0B)P* for all
X € M, (S), where all b;; are unit elements with by; =1 fori=1,...,n

Proof. Let T be an invertible linear operator on M, (S) that preserves D, (S).
By Lemma 2.4, there exist a permutation « on the set {(¢,7) 4,5 = 1,...,n}
and unit elements ¢;; € S, 4,7 = 1,...,7n such that T(Ey;) = ¢;;E4( ;). Now,
we will show that T(f) > I. If not, there exist a diagonal cell E;; and an off-
diagonal cell E,; such that T'(E;;) > E,, equivalently T(FEy;) = c¢;;Ers. Then
we have that E;; is idempotent while T'(E;;) is not, a contradiction. Thus we

n
obtain T(I) = > ¢;; Ey;. Since T preserves idempotent matrices, it follows that

i=1
all ¢;; are idempotent elements. That is, ¢;; are unit and idempotent, and hence
we have ¢;; = 1 for all i = 1,...,n, equivalently T'(I) = I. Therefore there is a

permutation § of {1,...,n} such that T'(Ey;) = Eg(;)g(;) for each i =1,...,n.
Define an operator L on M,,(S) by

L(X) = P'T(X)P

for all X € M,(S), where P is the permutation matrix corresponding to 3 so
that L(E;;) = E;; for each ¢ = 1,...,n. Then we can easily show that L is
an invertible linear operator on M., (S) that preserves idempotent matrices. By
Lemma 2.4, L permutes E,, with some unit scalar multiplication. Therefore
for any cell E, in E,,, there exist exactly one cell Eyq and a unit element b,,
such that L(E,;) = bysEp,. It follows from L(I) = I that b;; = 1 for each
i=1,...,n.

Suppose that r # s. Then we have p # g because L is injective. Consider
an idempotent matrix A = E,; 4+ E,, so that L(A) = bysEpq + E,r is also
idempotent. This implies that r = p or r = ¢. Similarly we have s = p or
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s = ¢q. Therefore we obtain that for each cell E,, in E,, there exists a unit
element &, such that

L(Ers) = brsErs or L(Ers) - brsEsr~

Suppose that L(E,;) = bsFrs with 7 # s and L(E,;) = btFy, for some
t # rs Let B = FE.,+ E.s+ E+. By Lemma 2.3, we have that B is
idempotent, while L(B) = E, + bysE.s + by By, is not, a contradiction. It
follows that if L(E;;) = b;; E;; for some cell E;; € E,, with ¢ # j, then we have
L(Eys) = bysEyps for all cell E,.; € E,. Similarly, if L(E;;) = b;;E;; for some
cell E;; € E,, with ¢ # j, then we have L(E,;) = b,sE,, for all cell E,.; € E,.

We have established that L(X) = X oB for all X € M, (S) or L(X) = X*oB
for all X € M, (S), where B = [b;;] is a matrix whose entries are unit elements
with b; = 1 for each ¢ = 1,...,n. Since L(X) = P'T(X)P, we have that
T(X) = P(X o B)P! for all X € M,(S) or T(X) = P(X* o B)P* for all
X € M, (S). O

3. The binary Boolean case and others

In this section we obtain characterizations of the linear operators that pre-
serve idempotent matrices over the binary Boolean algebra B, a chain semiring
K, the nonnegative integers Z, and the nonnegative reals R, .

Theorem 3.1. Let T be a linear operator on M,,(By). Then T is an invertible
linear operator that preserves D, (B1) if and only if there exists a permutation
matric P such that either

(a) T(X) = PXP! for all X € M,(B;), or

(b) T(X) = PX'P? for all X € M,,(B,).

Proof. Let T be an invertible linear operator on M,,(B;) that preserves D, (B1).
By Lemma 2.5, there exist a permutation matrix P and a matrix B = [b;;] such
that T(X) = P(X o B)P? for all X € M,,(S) or T(X) = P(X* o B)P? for all
X € M,(S), where all b;; are unit elements with b;; = 1 for ¢ = 1,...,n.
Since the element “1” is the only unit element in B,, we have b;; = 1 for all
1,5 =1,...,n. It follows that B = J,, and thus the necessity is satisfied. The
sufficiency is obvious. : O

Corollary 3.2. Let T be a linear operator on M, (S), where S = K or Z,.
Then T is an invertible linear operator that preserves D,(S) if and only if
there exists a permutation matriz P such that either

(a) T(X)=PXP?t for all X € M,(S), or

(b) T(X) = PX'P? for all X € M,(S).

Proof. The proof is similar to that of Theorem 3.1. il

Theorem 3.3. Let T be a linear operator on M, (R;). Then T is an invertible
linear operator that preserves D, (R.) if and only if there exists an invertible
matriz U such that either
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(a) T(X)=UXU"! for all X € M,(R;), or
(b) T(X) =UXtU! for all X € M,(R4).

Proof. Suppose that T is an invertible linear operator on M, (R, ) that pre-
serves D, (R;). By Lemma 2.5, there exist a permutation matrix P and a
matrix B = [b;;] such that T(X) = P(X o B)P! for all X € M,(R,) or
T(X) = P(X*oB)P! for all X € M, (R, ), where all b;; are unit elements with
bi; = 1 for i =1,...,n. Let 8 be a permutation of {1,...,n} corresponding
to P. Assume that 7(X) = P(X o B)P* for all X € M,(R,). Then we have
T(E;;) = bij Egs)p(;) for any cell E;; in E,.

Consider a matrix X = Ey; + Ey; + En + E;j, where ¢,j # 1. Then by
Proposition 2.2, X is idempotent. Since T preserves idempotent matrices, we
have T(X) = T(X)? so that

Epqys) + b1 Epays) + bitEguysq) + biiEpysy)
= Egpq) + b1 Epa)sy) + binEg)s) + binbii Egyse)s

equivalently,
Now we will show that b;; b;; =1 for all 4,5 = 1,...,n. Consider a matrix
1 1 1 1
Y = §Eu + iEz‘j + 5B+ §Ejj-

Then by Proposition 2.2, we can easily show that Y is idempotent so that
1 1 1 1
T(Y) = 585086 + 3biiEs@sw + 305:Esms6 + 5E60)80)-

It follows from Proposition 2.2 and T(Y)? = T(Y) that ib;ﬁﬂ = 3, equiva-
lently b;;b;; = 1foralli,j =1,...,n.

Let D = [d;;] = diag(b11,b21,.-.,bn1). By Lemma 2.1, D is invertible and
D71 = [e;;] = diag(bi1,b12, .- ., b1n). Now for any X = [2;5] € M, (R4), the
(i,7)*™ entry of DXD™1 is

Zi5 by by = @45 by

by (3.1), which is the (i,5)*" entry of X o B. Therefore X o B = DXD™ L.
It follows from T(X) = P(X o B)P* that T(X) = P(DXD~ )Pt If we let
U = PD, then U is invertible and T(X) = UXU™! for all X € M, (R,).
Similarly, if T(X) = P(X! o B)P!, we obtain that T(X) = UX!U~! for all
X e M, (Ry).

The converse is obvious. a

Thus we have characterized the linear operators that preserve idempotent
matrices over the binary Boolean algebra B4, a chain semiring K, the nonneg-
ative integers Z ., and the nonnegative reals R, .
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4. The general Boolean case

In this section, we study idempotent matrices over a general Boolean algebra
By with & > 1. Furthermore, using Theorem 3.1, we obtain characterizations
of linear operators that preserve idempotent matrices over a general Boolean
algebra.

For any matrix A = [a;;] € M[,(By), the I'" constituent, A;, of Aisthenxn
binary Boolean matrix whose (,7)*" entry is 1 if and only if ai; 2 0;. Via the
constituents, A can be written uniquely as

k
A= ZUlAla
=1

which is called the canonical form of A (see [8]).
It follows from the uniqueness of the decomposition and the fact that the

singletons are mutually orthogonal idempotents that for all matrices A, B €
M,,(Bx) and all o € By,

(41) (AB)Z = AlBl, (A + B)l = Al + Bl and (OzA)l = alAl
foralll1 <<k,

Theorem 4.1. Let A be a matriz in M,,{By) with k > 1. Then A is idempotent
if and only if all I** constituents of A are idempotent in M, (B,).

k
Proof. Let A be idempotent in M, (By) which has the canonical form 5 a;4;.
! =1
Then we have

A2=0'1A12+"-+0'kAk2:01A1+"'+O'kAk:A.

Suppose that an I*" constituent, A;, of A is not idempotent in M, (B;) for some

1 <1< k. Then there exist indices ¢ and 5 such that (¢, )" entries of A; and
A;? are different in By = {0,1}. If the (4,5)*™ entry of A4; is 1, then that of A;>
is 0. Thus the (4, ;)" entry of A contains g;, but A% does not. Therefore we
have A% # A, a contradiction. Similarly, if the (i, )" entry of A; is 0, we have
A? # A, a contradiction. Therefore all It* constituents of A are idempotent

in M,,(B;). The converse follows from the definition of the canonical form of
A. O0

Lemma 4.2. For any matric A € M,,(By) with k > 1, A is invertible if and
only if all its constituents are permutation matrices. In particular, if A is
invertible, then A~! = A?.

Proof. If A is invertible in M, (By), there exists a matrix B in M,,(Bx) such
that AB = I,. The equality (4.1) implies that (AB), = A;B; = I, for all
{=1,...,k It follows that all constituents of A are permutation matrices.
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Conversely, assume that each I*" constituent, A;, of A is a permutation matrix.

Then we have 4;Af = I, for all [ = 1,...,k and hence

k k
AAY = (ZGzAl) (Zalz‘h)t
kz=1 l=kl
= ZUIAIA; = Zalln = In.
=1 =1
Therefore A is invertible. O

If T is a linear operator on M, (By) with & > 1, for each 1 <! < k define its
constituent operator, T}, by

T,(B) = (T(B)):
for all B € M, (Bg) (see [8]). By the linearity of T, we have

lth

k
T(4) = oiTi(A)
=1

for any matrix A € M, (By).

Lemma 4.3. If T is an invertible linear operator on M, (By) with k > 1, then
each I*" constituent operator, T}, is also invertible linear operator on M,,(B,).

Proof. 1t follows from Lemma 2.4 and the definition of a constituent operator.
a

For any fixed invertible matrix U in M, (S), the operator A — UAU"® is
called a similarity operator. We can easily show that any similarity operator
on M,,(S) is an invertible linear operator and preserves idempotent matrices.
Also, we can restate Theorem 3.1 as follows: the semigroup of linear operators
that preserve idempotent matrices over B, is generated by transpositions and
similarity operators. But for a general Boolean algebra By with k > 2, the
following example shows that there exists another invertible linear operator
preserving idempotent matrices which is neither a transposition operator nor
a similarity operator.

Example 4.4. Define an operator T on M (B5) by
T(X) =o01X1 + O'zXé

2
for all X = > 0yX; € M3(By). Then we can easily show that T is a linear
I=1
operator on Ms(Bs) which is neither a transposition nor a similarity.

It follows from the uniqueness of canonical form of a matrix that T is in-
2

jective. Let Y = Y 0;Y; be any matrix in M3(B,). Then we can take the
=1
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matrix X = 01Y1 + 02Y4 € My(Bs), so that T(X) =Y. This implies that T is
surjective. Therefore T is invertible.

2
Let A=) g;4; be an idempotent matrix in Ma(B2). By Theorem 4.1, we
1

=
have that A? = A; in My(B,) for [ = 1,2. It follows that T(A); = A; and
T(A)z = A} are idempotent matrices in My(B;). By Theorem 4.1, T'(A) is also
idempotent. Therefore T preserves idempotent matrices.

Theorem 4.5. Let T' be a linear operator on M, (Bg) with k > 1. Then T is
an invertible linear operator preserving idempotent matrices if and only if there
exists an invertible matriz U in M, (By) such that

T(X) = U(iam)w
=1

for all X € M, (By), where Y; = X; or Y, = X} for eachl=1,... k.

Proof. Assume that T is an invertible linear operator on M, (B;) preserving
idempotent matrices. By Lemma 4.3 and Theorem 4.1, we have that all its con-
stituent operators, T}, are invertible linear operators on M, (B;) and preserve

idempotent matrices foreach [ =1,... k.
k
Let X = Y 0,X; be any matrix in M, (B;). Then we have T(X) =
=1

k
0 Ty(X;). By Theorem 3.1, each I*P constituent operator, T}, has the form
=1 ’

T)(X)) = RX,Pf or Ti(X,)=PX/P,
where each P, is a permutation matrix for all [ = 1,..., k. Thus we have
k
T(X) =) aPYP,
=1

where V; = X; or Y; = X} for each I = 1,...,k, equivalently

T(X) = (gmﬂ> (lz;:am) (galﬂ)ﬁ

k

If welet U = > 0P, then U is invertible in M, (B ) by Lemma 4.2, and hence
=1

the result is satisfied.

The converse is immediate. ]

Thus we have obtained characterizations of invertible linear operators that
preserve idempotent matrices over general Boolean algebras.
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