• Title/Summary/Keyword: (200) texture

Search Result 240, Processing Time 0.029 seconds

Tensile Properties of Nickel Electroform(l) (니켈 전주층의 인장 물성(1))

  • Kim I.;Lee J.;Kang K.;Kwon S.C.;Kim M.;Lee J.Y.
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.1
    • /
    • pp.21-27
    • /
    • 2005
  • Tensile properties and hardness of nickel electroform from chloride-free nickel sulfamate electrolyte at 50℃ and PH 4.5 were investigated. Current density varied from 20 to 60 mA/㎠. The deposit thicknesses were 360, 480 and 980 ㎛. It was found in 480 ㎛ thick electroform that highest tensile and yield strengths and hardness of 83.7 ksi, 53.6 ksi and 216 DPH, respectively were obtained at a current density of 40 mA/㎠ and they were slightly decreased at 20 and 60 mA/㎠. However the ductility was lowest of 7.9% at 40 mA/㎠. Such a high strength and low ductility at 40 mA/㎠ seems to be related to the narrower columnar structure than those of other current densities. All the deposits exhibited pronounced necking behavior. Tensile strength, yield strength and ductility increased as the nickel electroform thickens. Initial strong (200) texture developed on stainless steel mandrel decreased and (111) and (220) textures increased as deposit thickness increased, whereas (200) texture was preferred as the current density increased.

Effects of oxygen partial pressure during sputtering on texture and electrical properties of $CeO_2$ thin films ($CeO_2$박막의 결정성 및 전기적 특성에 미치는 sputtering시 산소분압비의 영향)

    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.51-56
    • /
    • 2001
  • $CeO_2$ thin films as insulator for MFISFET (Metal-ferroelectric-insulator- semiconductor-field effect transistor) were deposited by r.f. magnetron sputtering. Ar and $O_2$ gas as the deposition gas were used and the effects of oxygen partial pressure during sputtering on texture and electrical properties of $CeO_2$ thin films were evaluated. All $CeO_2$ thin films deposited on p-type Si(100) substrate at $600^{\circ}C$ exhibited (200) preferred orientation. The films deposited with only Ar gas among various condition had highest preferred orientation but show large hysteresis characteristics in capacitance-voltage measurement due to relatively many charged paricles and roughness. Films show smooth surface state and good C-V characteristics with increasing oxygen partial pressure. It was thought that this trend in C-V characteristics was due to the amount of mobile ionic charge within $CeO_2$ films. The composition of films show oxygen excess, that is, O/$Ce_2$ ratio of films was 2.22~2.42 range and leakage current of films show $10^{-7}~10^{-8}A$order at 100 kV/cm.

  • PDF

Features and Properties of $YBa_2$$Cu_3$$O_{7-x}$ Films Grown on SrTi$O_3$ by High Frequency PLD

  • Shi, D.Q.;Ko, R.K.;Song, K.J.;Chung, J.K.;Choi, S.J.;Park, Y.M.;Shin, K.C.;Yoo, S.I.;Park, C.
    • Progress in Superconductivity
    • /
    • v.5 no.1
    • /
    • pp.75-79
    • /
    • 2003
  • YBCO films were deposited with various thicknesses from 100nm to 1.6$\mu\textrm{m}$ on single crystal $SrTiO_3$ substrates by pulsed laser deposition (PLD). The effects of different deposition conditions, especially different deposition rates by means of changing the pulsed laser frequency up to 200Hz, on the J$_{c}$ value were studied. For YBCO film with the thickness of 200nm, the $J_{c}$ value of $2.1MA/\textrm{cm}^2$ has been achieved under the high deposition rate of 3.2nm/s (190nm/min). The $J_{c}$ can be maintained greater than $1M/\textrm{cm}^2$ with the thickness less than 1$\mu\textrm{m}$. The X-ray analysis was used to examine the texture, crystallization and surface quality. The SEM was employed to analyze the surface of YBCO, and it was shown the surface of YBCO film became rougher with increasing the thickness. There were many large singular outgrowths and networks of outgrowths on the surface of YBCO films which lowered the density of thick YBCO film. The outgrowth network was probably the a-axis YBCO corresponding to XRD $\theta$-2$\theta$scan and $\chi$-scan which were used to characterize a-axis orientation of YBCO film. The reason for J$_{c}$ declining with increasing the thickness was studied and discussed.sed.

  • PDF

Annealing Characteristics of an Al-6.5Mg-1.5Zn Alloy Cold-Rolled After Casting (주조 후 냉간 압연된 Al-6.5Mg-1.5Zn계 합금의 어닐링 특성)

  • Oh, Sung-Jun;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.28 no.9
    • /
    • pp.534-538
    • /
    • 2018
  • The annealing characteristics of a cold rolled Al-6.5Mg-1.5Zn alloy newly designed as an automobile material is investigated in detail. The aluminum alloy in the ingot state is cut to a thickness of 4 mm, a total width of 30 mm and a length of 100 mm and then reduced to a thickness of 1 mm (reduction of 75 %) by multi-pass rolling at room temperature. Annealing after rolling is performed at temperatures ranging from 200 to $400^{\circ}C$ for 1 hour. The tensile strength of the annealed material tends to decrease with the annealing temperature and shows a maximum tensile strength of 482MPa in the material annealed at $200^{\circ}C$. The tensile elongation of the annealed material increases with the annealing temperature, while the tensile strength does not, and reaches a maximum value of 26 % at the $350^{\circ}C$ annealed material. For the microstructure, recovery and recrystallization actively occur as the annealing temperature increases. The recrystallization begins to occur at $300^{\circ}C$ and is completed at $350^{\circ}C$, which results in the formation of a fine grained structure. After the rolling, the rolling texture of {112}<111>(Cu-Orientation) develops, but after the annealing a specific texture does not develop.

Effects of Extrusion Process Parameters on Puffing of Extruded Pellets (압출성형 공정변수가 압출성형 펠릿의 팽화에 미치는 영향)

  • Kim, Jae-Hyun;Ryu, Gi-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.55-59
    • /
    • 2001
  • Pressure-puffing system or extruder has been used to puff rice kernel or rice flour. Most of the study on rice puffing were the effect of process conditions such as moisture content and heating temperature on physical and chemical characteristics of popped rice. The study on mechanism and development of instant puffed rice like popcorn has been limited. Extruded waxy rice pellets were puffed in a microwave oven after drying and conditioning. Extruded pellets were formed with extrusion conditions of $20{\sim}27%$ moisture content, 2.76 MPa $CO_2$ gas injection pressure and 200 rpm screw speed. Under these conditions, puffed waxy rice pellets in microwave oven had low density and soft texture. Density and texture of puffed waxy rice pellet could be optimized by control of moisture content, $CO_2$ gas injection pressure and screw speed that affect significantly when puffing extruded waxy rice pellet.

  • PDF

Effects of Raw Material and Extrusion Cooking Conditions on Physical and Chemical Properties of the Puffed Rice Extrudate (쌀의 원료상태 및 Extrusion Cooking 조건이 Puffed Extrudate의 특성에 미치는 영향)

  • Lee, Young-Chun;Ha, Yean-Chul;Bock, Jin-Young;Shin, Dong-Bin;Lee, Kyung-Hae
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.105-109
    • /
    • 1990
  • A laboratory scale co-rotating twin-screw extruder (D24 mm, L/D=14) was used for the extrusion of rice, which could be used for a puffed rice snack. As screw speed of the extrusion cooker was increased from 200 to 360 rpm, air cells structure of the extrudate from glutinous rice powder was improved to small and uniform air cells, and the moisture conetent of rice powder should be maintained to 15-17.5% for better texture of the extrudate. Objective and sensory texture of the extrudate from powder was better than those from grits, and there was no significant difference in textural properties between extrusion made with rice and glutinous rice.

  • PDF

Tribological Properties and Friction Coefficient Prediction Model of 200μm Surfaces Micro-Textured on AISI 4140 in Soybean Crusher (콩 분쇄기의 AISI 4140에서 200μm 미세 패턴 표면의 마찰 계수 및 마찰 계수 예측 모델)

  • Choi, Wonsik;Pratama, Pandu Sandi;Supeno, Destiani;Byun, Jaeyoung;Lee, Ensuk;Woo, Jihee;Yang, Jiung;Keefe, Dimas Harris Sean;Chrysta, Maynanda Brigita;Okechukwu, Nicholas Nnaemeka;Lee, Kangsam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.5
    • /
    • pp.247-255
    • /
    • 2018
  • In this research, the effect of normal load, sliding velocity, and texture density on thefriction coefficient of surfaces micro-textured on AISI 4140 under paraffin oil lubrication were investigated. The predicted tribological behavior by numerical calculation can be serves as guidance for the designer during the machine development stage. Therefore, in this research friction coefficient prediction model based on response surface methodology (RSM), support vector machine (SVM), and artificial neural network (ANN) were developed. The experimental result shows that the variation of load, speed and texture density were influence the friction coefficient. The RSM, ANN and SVM model was successfully developed based on the experimental data. The ANN model can effectively predict the tribological characteristics of micro-textured AISI 4140 in paraffin oil lubrication condition compare to RSM and SVM.

Microstructure and Characterization Depending on Process Parameter of SnO2 Thin Films Fabricated by PECVD Method (PECVD법에 의해 제조된 SnO2 박막의 공정변수에 따른 미세구조 및 특성)

  • Lee, Jeong-Hoon;Jang, Gun-Eik;Son, Sang-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.680-686
    • /
    • 2006
  • Tin oxide$(SnO_2)$ thin films were prepared on glass substrate by Plasma Enhanced Chemical Vapor Deposition (PECVD) method. $SnO_2$ thin films were prepared using gas mixture of dibutyltin diacetate as a precursor and oxygen as an oxidant at 275, 325, 375, $425^{\circ}C$, respectively as a function of deposition temperature. The XRD peaks corresponded to those of polycrystalline $SnO_2$, which is in the tetragonal system with a rutil-type structure. As the deposition temperature increased, the texture plane of $SnO_2$ changed from (200) plane to denser (211) and (110) planes. Lower deposition temperature and shorter deposition time led to decreasing surface roughness and electrical resistivity of the formed thin films at $325\sim425^{\circ}C$. The properties of $SnO_2$ films were critically affected by deposition temperature and time.

Effect of composition and structure on exchange anisotropy of IrxMn(100-x)/NiFe films

  • Suh, Su-jung;Park, Young-suk;Ro, Jae-chul;Yong-sung;Yoon, Dae-ho
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.91-95
    • /
    • 1998
  • Exchange anisotropy between IrMn antiferromagnetic layer and NiFe ferromagnetic layer has been studied in IrxMn(100-x)/NiFe/Buffr/Si(100) films deposited by D. C. magnetron sputtering method. Among Zr, Ta, and Cu used as buffer layer, Zr and Ta enhanced the fcc(111) texture of NiFe and IeMn layer, but Cu did not affect microstructure of those layer. Strong fcc(111) texture of IrMn layer was confirmed to be the origin of exchange anisotropy of IrMn. Ir composition control in IrMn layer showed that {{{{ gamma -phase}}}} IrMn is stabilized between 10 and 30 at % Ir, an 21 at. % Ir in IrMn layer was optimum composition that showed maximum exchange anisotropy field. above 200 ${\AA}$ thickness of IrMn, antiferromagnetic property is stabilzed to show saturated exchange anisotropy field. Based pressure was confirmed to be critical requisite in IrMn-based spin-valve GMR system.

  • PDF

Effect of Iron Co-deposited Nickel on the Microstructures and Properties of Electroplated Nanocrystalline Nickel-iron Alloys (전착된 나노 결정질 니켈-철 합금의 미세구조 및 물성에 대한 철의 영향)

  • Byun Myung-Hwan;Cho Jin-Woo;Song Yo-Seung
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.4
    • /
    • pp.156-162
    • /
    • 2005
  • Nickel-iron nanocrystalline alloys with different compositions and grain sizes were fabricated by electro-plating for MEMS devices. The iron content of the deposits was changed by varying the nickel/iron ion ratio in the electrolyte. X-ray diffraction (XRD) analysis was applied for measuring the strength of the texture and grain size of the deposits. The nickel/iron atom ratio of the deposits was analyzed by EDS. The hardness of the alloys was evaluated by Vickers hardness indenter. The internal stress of the deposits was measured by Thin Film Stress Measurement using Stoney's formula. Surface morphology and roughness were investigated by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The results of this study revealed that at a grain size of approximately $17\~24$nm the hardness, internal stress and roughness depend strongly on the iron content. With increasing the iron content, the hardness and internal stress of the deposits increased. An excellent correlation between the increase in the internal stress and the loss of (200) texture was found.