Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.9.534

Annealing Characteristics of an Al-6.5Mg-1.5Zn Alloy Cold-Rolled After Casting  

Oh, Sung-Jun (Department of Advanced Materials Science and Engineering, Mokpo National University)
Lee, Seong-Hee (Department of Advanced Materials Science and Engineering, Mokpo National University)
Publication Information
Korean Journal of Materials Research / v.28, no.9, 2018 , pp. 534-538 More about this Journal
Abstract
The annealing characteristics of a cold rolled Al-6.5Mg-1.5Zn alloy newly designed as an automobile material is investigated in detail. The aluminum alloy in the ingot state is cut to a thickness of 4 mm, a total width of 30 mm and a length of 100 mm and then reduced to a thickness of 1 mm (reduction of 75 %) by multi-pass rolling at room temperature. Annealing after rolling is performed at temperatures ranging from 200 to $400^{\circ}C$ for 1 hour. The tensile strength of the annealed material tends to decrease with the annealing temperature and shows a maximum tensile strength of 482MPa in the material annealed at $200^{\circ}C$. The tensile elongation of the annealed material increases with the annealing temperature, while the tensile strength does not, and reaches a maximum value of 26 % at the $350^{\circ}C$ annealed material. For the microstructure, recovery and recrystallization actively occur as the annealing temperature increases. The recrystallization begins to occur at $300^{\circ}C$ and is completed at $350^{\circ}C$, which results in the formation of a fine grained structure. After the rolling, the rolling texture of {112}<111>(Cu-Orientation) develops, but after the annealing a specific texture does not develop.
Keywords
cold rolling; aluminum alloys; mechanical properties; microstructure; annealing;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 X. Fan, Z. He, W. Zhou and S. Yuan, J. Mater. Process. Technol., 228, 179 (2016).   DOI
2 L. Ding, Y. Weng, S. Wu, R. E. Sanders, Z. Jia and Q. Liu, Mater. Sci. Eng., A, 651, 991 (2016).   DOI
3 M. J. Ahn, H. S. You and S. H. Lee, Korean J. Mater. Res., 26, 388 (2016).   DOI
4 J. H. Yang, and S. H. Lee, Korean J. Mater. Res., 26, 628 (2016).   DOI
5 H. W. Kim, S. B. Kang, H. Kang and K. W. Nam, Korean J. Met. Mater., 37, 1041 (1999).
6 H. S. Ko, S. B. Kang, H. W. Kim and S. H. Hong, Korean J. Met. Mater., 37, 650 (1999).
7 H. S. Ko, S. B. Kang and H. W. Kim, Korean J. Met. Mater., 37, 891 (1999).
8 K. D. Woo, H. S. Na, H. J. Mun and I. O. Hwang, Korean J. Met. Mater., 38, 766 (2000).
9 K. D. Woo, I. O. Hwang, J. S. Lee, Korean J. Met. Mater., 37, 1468 (1999).
10 C. W. Park and H. Y. Kim, Trans. Korean Soc. Mech. Eng. A, 36, 1675 (2012).   DOI
11 N. J. Park, J. H. Hwang and J. S. Roh, Korean J. Met. Mater., 47, 1 (2009)
12 C. D. Yim, Y. M. Kim, S. H. Park and B. S. You, Korean J. Met. Mater., 50, 619 (2012).   DOI
13 D. H. Kim, J. M. Choi, D. H. Jo and I. M. Park, Korean J. Met. Mater., 52, 195 (2014).   DOI
14 E. Y. Kim, J. H. Cho, H. W. Kim and S. H. Choi, Korean J. Met. Mater., 51, 41 (2013).   DOI
15 F. J. Humphreys and M. Hatherly, RECRYSTALLIZATION and Related Annealing Phenomena, 2nd ed., p.169-172, Elsevier Ltd, UK (2004).
16 Japan Inst. of Light Metals, Microstructure and Properties of Aluminum Alloys, p.451-469, Japan (1991).
17 S. GUO, Y. XU, Y. Han, J. LIU, G. XUE and H. NAGAUMI, Trans. Nonferrous Met. Soc. China, 24, 2393 (2014).   DOI