Browse > Article

Effect of Iron Co-deposited Nickel on the Microstructures and Properties of Electroplated Nanocrystalline Nickel-iron Alloys  

Byun Myung-Hwan (Department of Materials Engineering, Hankuk Aviation University)
Cho Jin-Woo (Korea Electronics Technology Institute)
Song Yo-Seung (Department of Materials Engineering, Hankuk Aviation University)
Publication Information
Journal of the Korean institute of surface engineering / v.38, no.4, 2005 , pp. 156-162 More about this Journal
Abstract
Nickel-iron nanocrystalline alloys with different compositions and grain sizes were fabricated by electro-plating for MEMS devices. The iron content of the deposits was changed by varying the nickel/iron ion ratio in the electrolyte. X-ray diffraction (XRD) analysis was applied for measuring the strength of the texture and grain size of the deposits. The nickel/iron atom ratio of the deposits was analyzed by EDS. The hardness of the alloys was evaluated by Vickers hardness indenter. The internal stress of the deposits was measured by Thin Film Stress Measurement using Stoney's formula. Surface morphology and roughness were investigated by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The results of this study revealed that at a grain size of approximately $17\~24$nm the hardness, internal stress and roughness depend strongly on the iron content. With increasing the iron content, the hardness and internal stress of the deposits increased. An excellent correlation between the increase in the internal stress and the loss of (200) texture was found.
Keywords
Electroplating; nickel-iron alloy; Nanocrystalline; Grain size; Internal stress; Hardness; Roughness;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Nosang V. Myung, D.-Y. Park, B.-Y. Yoo, Paulo T. A. Sumodjo, J. Mag. Mag. Materials, 265 (2003) 189   DOI   ScienceOn
2 L. S. Stephens, K. W. Kelly, S. S. Simhadri, A. B. McCandless, E. I. Meletis, J. Microelectromechan. Syst., 10 (2001) 347   DOI   ScienceOn
3 T. Itoh, K. Kataoka, T. Suga, Sens. Actuators A, 97-98 (2002) 462-467   DOI   ScienceOn
4 K. C. Chan, W. K. Chan, N. S. Qu, J. Mater. Proc. Technol., 89-90 (1999) 447   DOI   ScienceOn
5 C. N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chat-topadhyay, M. Saravanakumar, Mater. Sci. Eng., A304-306 (2001) 408
6 K. P. Wong, K. C. Chan, T. M. Yue, Surf. Coat. Technol., 115 (1999) 132   DOI   ScienceOn
7 H. Majjad, S. Basrour, P. Delobelle, M. Schmidt, Sensors & Actuators, 74 (1999) 148   DOI   ScienceOn
8 D. L. Grimmett, Ph.D. Thesis, University of California Los Angeles, Los Angeles, California, U.S.A. (1998)
9 Y.-M. Yeh, G. C. Tu, T.-H. Fang, J. Alloys. Comp., 372 (2004) 224   DOI   ScienceOn
10 D. J. Nagel, M. E. Zaghloul, IEEE Circuit Dev., 17 (2001) 14
11 C. Cheung, G. Palumbo, U. Erb, Scripta Metall. et Mater., 31 (1994) 735   DOI   ScienceOn
12 S. P. Backstrom, C. Riekel, S. Abel, H. Lehr, H. R. Wenk, J. Appl. Cryst., 29 (1996) 118   DOI
13 H. Q. Li, F. Ebrahimi, Acta Materialia, 51 (2003) 3905   DOI   ScienceOn
14 G. G. Stoney, Proc. R. Soc. London A, 82 (1909) 172   DOI
15 F. E. Rasmussen, J. T. Ravnkilde, P. T. Tang, O. Hansen, S. Bouwstra, Sens. Actuators A, 92 (2001) 242   DOI   ScienceOn
16 K. Kataoka, S. Kawamura, T. Itoh, K. Ishikawa, H. Honma, T. Suga, Sens. Actuators A, 103 (2003) 116   DOI   ScienceOn
17 S. D. Leith, D. T. Schwartz, J. Microelectromechan Syst., 8 (1999) 384   DOI   ScienceOn
18 M. C. Chou, H. Yang, S. H. Yeh, Microsyst. Technol., 7 (2001) 36   DOI   ScienceOn
19 S. Roth, L. Dellman, G. A. Racine, N. F. Derooji, J. Micromech. Microeng., 9 (1999) 105   DOI   ScienceOn
20 J. Tabakovic, S. Riemer, V. Inturi, P. Jallen, A. Thayer, J. Electrochem. Soc., 147 (2000) 219   DOI   ScienceOn
21 A. M. EI-Sheruk, J. Shirokoff, U. Erb, J. Alloys. Comp., 389 (2005) 140   DOI   ScienceOn
22 Y. N. Sadana, Z. H. Zhang, Surf. Coat. Technol., 38 (1989) 299   DOI   ScienceOn