• Title/Summary/Keyword: (2, ${\beta}$)-normed space

Search Result 8, Processing Time 0.023 seconds

GENERALIZED HYERS-ULAM-RASSIAS STABILITY FOR A GENERAL ADDITIVE FUNCTIONAL EQUATION IN QUASI-β-NORMED SPACES

  • Moradlou, Fridoun;Rassias, Themistocles M.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.2061-2070
    • /
    • 2013
  • In this paper, we investigate the generalized HyersUlam-Rassias stability of the following additive functional equation $$2\sum_{j=1}^{n}f(\frac{x_j}{2}+\sum_{i=1,i{\neq}j}^{n}\;x_i)+\sum_{j=1}^{n}f(x_j)=2nf(\sum_{j=1}^{n}x_j)$$, in quasi-${\beta}$-normed spaces.

ON THE STABILITY OF RECIPROCAL-NEGATIVE FERMAT'S EQUATION IN QUASI-β-NORMED SPACES

  • Kang, Dongseung;Kim, Hoewoon B.
    • The Pure and Applied Mathematics
    • /
    • v.26 no.2
    • /
    • pp.85-97
    • /
    • 2019
  • In this paper we introduce the reciprocal-negative Fermat's equation induced by the famous equation in the Fermat's Last Theorem, establish the general solution in the simplest cases and the differential solution to the equation, and investigate, then, the generalized Hyers-Ulam stability in a $quasi-{\beta}-normed$ space with both the direct estimation method and the fixed point approach.

ISHIKAWA AND MANN ITERATIVE PROCESSES WITH ERRORS FOR NONLINEAR $\Phi$-STRONGLY QUASI-ACCRETIVE MAPPINGS IN NORMED LINEAR SPACES

  • Zhou, H.Y.;Cho, Y.J.
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.6
    • /
    • pp.1061-1073
    • /
    • 1999
  • Let X be a real normed linear space. Let T : D(T) ⊂ X \longrightarrow X be a uniformly continuous and ∮-strongly quasi-accretive mapping. Let {${\alpha}$n}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} , {${\beta}$n}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} be two real sequences in [0, 1] satisfying the following conditions: (ⅰ) ${\alpha}$n \longrightarrow0, ${\beta}$n \longrightarrow0, as n \longrightarrow$\infty$ (ⅱ) {{{{ SUM from { { n}=0} to inf }}}} ${\alpha}$=$\infty$. Set Sx=x-Tx for all x $\in$D(T). Assume that {u}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} and {v}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} are two sequences in D(T) satisfying {{{{ SUM from { { n}=0} to inf }}}}∥un∥<$\infty$ and vn\longrightarrow0 as n\longrightarrow$\infty$. Suppose that, for any given x0$\in$X, the Ishikawa type iteration sequence {xn}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} with errors defined by (IS)1 xn+1=(1-${\alpha}$n)xn+${\alpha}$nSyn+un, yn=(1-${\beta}$n)x+${\beta}$nSxn+vn for all n=0, 1, 2 … is well-defined. we prove that {xn}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} converges strongly to the unique zero of T if and only if {Syn}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} is bounded. Several related results deal with iterative approximations of fixed points of ∮-hemicontractions by the ishikawa iteration with errors in a normed linear space. Certain conditions on the iterative parameters {${\alpha}$n}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} , {${\beta}$n}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} and t are also given which guarantee the strong convergence of the iteration processes.

  • PDF

A FIXED POINT APPROACH TO THE STABILITY OF QUINTIC MAPPINGS IN QUASI β-NORMED SPACES

  • Koh, Heejeong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.4
    • /
    • pp.757-767
    • /
    • 2013
  • We investigate the general solution of the following functional equation and the generalized Hyers-Ulam-Rassias stability problem in quasi ${\beta}$-normed spaces and then the stability by using alternative fixed point method for the following quintic function $f:X{\rightarrow}Y$ such that f(3x+y)+f(3x-y)+5[f(x+y)+f(x-y)]=4[f(2x+y)+f(2x-y)]+2f(3x)-246f(x), for all $x,y{\in}X$.

SOME NEW RESULTS ON HYPERSTABILITY OF THE GENERAL LINEAR EQUATION IN (2, β)-BANACH SPACES

  • EL-Fassi, Iz-iddine
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.901-917
    • /
    • 2018
  • In this paper, we first introduce the notions of (2, ${\beta}$)-Banach spaces and we will reformulate the fixed point theorem [10, Theorem 1] in this space. We also show that this theorem is a very efficient and convenient tool for proving the new hyperstability results of the general linear equation in (2, ${\beta}$)-Banach spaces. Our main results state that, under some weak natural assumptions, functions satisfying the equation approximately (in some sense) must be actually solutions to it. Our results are improvements and generalizations of the main results of Piszczek [34], Brzdęk [6, 7] and Bahyrycz et al. [2] in (2, ${\beta}$)-Banach spaces.

ON STABILITY OF A GENERALIZED QUADRATIC FUNCTIONAL EQUATION WITH n-VARIABLES AND m-COMBINATIONS IN QUASI-𝛽-NORMED SPACES

  • Koh, Heejeong;Lee, Yonghoon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.319-326
    • /
    • 2020
  • In this paper, we establish a general solution of the following functional equation $$mf\({\sum\limits_{k=1}^{n}}x_k\)+{\sum\limits_{t=1}^{m}}f\({\sum\limits_{k=1}^{n-i_t}}x_k-{\sum\limits_{k=n-i_t+1}^{n}}x_k\)=2{\sum\limits_{t=1}^{m}}\(f\({\sum\limits_{k=1}^{n-i_t}}x_k\)+f\({\sum\limits_{k=n-i_t+1}^{n}}x_k\)\)$$ where m, n, t, it ∈ ℕ such that 1 ≤ t ≤ m < n. Also, we study Hyers-Ulam-Rassias stability for the generalized quadratic functional equation with n-variables and m-combinations form in quasi-𝛽-normed spaces and then we investigate its application.

HYPERSTABILITY CRITERION FOR A NEW TYPE OF 2-VARIABLE RADICAL FUNCTIONAL EQUATIONS

  • EL-Fassi, Iz-iddine
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.343-359
    • /
    • 2021
  • The aim of this paper is to obtain the general solution of the 2-variable radical functional equations $f({\sqrt[k]{x^k+z^k}},\;{\sqrt[{\ell}]{y^{\ell}+w^{\ell}}})=f(x,y)+f(z,w)$, x, y, z, w ∈ ℝ, for f a mapping from the set of all real numbers ℝ into a vector space, where k and ℓ are fixed positive integers. Also using the fixed point result of Brzdęk and Ciepliński [11, Theorem 1] in (2, 𝛽)-Banach spaces, we prove the generalized hyperstability results of the 2-variable radical functional equations. In the end of this paper we derive some consequences from our main results.