
Commun. Korean Math. Soc. 33 (2018), No. 3, pp. 901–917
https://doi.org/10.4134/CKMS.c170344
pISSN: 1225-1763 / eISSN: 2234-3024

SOME NEW RESULTS ON HYPERSTABILITY OF THE
GENERAL LINEAR EQUATION IN (2, β)-BANACH SPACES

Iz-iddine EL-Fassi

Abstract. In this paper, we first introduce the notions of (2, β)-Banach
spaces and we will reformulate the fixed point theorem [10, Theorem 1]
in this space. We also show that this theorem is a very efficient and con-
venient tool for proving the new hyperstability results of the general lin-
ear equation in (2, β)-Banach spaces. Our main results state that, under
some weak natural assumptions, functions satisfying the equation approx-
imately (in some sense) must be actually solutions to it. Our results are
improvements and generalizations of the main results of Piszczek [34],
Brzdęk [6, 7] and Bahyrycz et al. [2] in (2, β)-Banach spaces.

1. Introduction and preliminaries

In this paper, N, R, R+ and C denote the sets of all positive integers, real
numbers, non-negative real numbers and complex numbers, respectively; and
we put N0 := N∪{0} and let F, K denote the fields of real or complex numbers.

The next definition describes the notion of hyperstability that we apply here
(AB denotes the family of all functions mapping a set B 6= ∅ into a set A 6= ∅).

Definition 1.1. Let A be a nonempty set, (Z, d) be a metric space, γ : An →
R+, B ⊂ An be nonempty, and F1,F2 : D → ZA

n

be two mappings with D is
a nonempty set of ZA. We say that the conditional equation

(1.1) F1ϕ(x1, . . . , xn) = F2ϕ(x1, . . . , xn), (x1, . . . , xn) ∈ B
is γ-hyperstable, if every ϕ0 ∈ D satisfying

(1.2) d
(
F1ϕ0(x1, . . . , xn),F2ϕ0(x1, . . . , xn)

)
¬γ(x1, . . . , xn), (x1, . . . , xn)∈B

is a solution of Eq. (1.1).

That notion is one of the notions related to the issue of Ulam stability for
various (e.g., difference, differential, functional, integral, operator) equations.
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Let us recall that the study of such problems was motivated by the following
question of Ulam (cf. [23, 40]) asked in 1940.

Ulam’s question. Let (G1, ∗), (G2, ?) be two groups and ρ : G2×G2 → [0,∞)
be a metric. Given ε > 0, does there exist δ > 0 such that if a function g :
G1 → G2 satisfies the inequality

ρ(g(x ∗ y), g(x) ? g(y)) ¬ δ

for all x, y ∈ G1, then there is a homomorphism h : G1 → G2 with

ρ(g(x), h(x)) ¬ ε

for all x ∈ G1?

In 1941, Hyers [23] published the first answer to it, in the case of Banach
space. The following theorem is the most classical result concerning the Hyers-
Ulam stability of the Cauchy equation

(1.3) f(x+ y) = f(x) + f(y), x, y ∈ E1,

where E1 is a normed space.

Theorem 1.1. Let E1, E2 be normed spaces and f : E1 → E2 satisfy the
inequality

(1.4) ‖f(x+ y)− f(x)− f(y)‖ ¬ θ(‖x‖p + ‖y‖p)

for all x, y ∈ E1\{0}, where θ and p are real constants with θ > 0 and p 6= 1.
Then the following two statements are valid.

(a) If p ­ 0 and E2 is complete, then there exists a unique solution T :
E1 → E2 of (1.3) such that

(1.5) ‖f(x)− T (x)‖ ¬ θ

|1− 2p−1|
‖x‖p , x ∈ E1\{0}.

(b) If p < 0, then f is additive, i.e., (1.3) holds.

Note that Theorem 1.1 reduces to the first result of stability due to Hyers
[23] if p = 0, Aoki [1] for 0 < p < 1 (see also [37]). Afterward, Gajda [20]
obtained this result for p > 1 and gave an example to show that Theorem 1.1
fails whenever p = 1. Also, Rassias [38] proved Theorem 1.1 for p < 0 (see
[39, page 326] and [4]). Now, it is well-known that the statement (b) is valid,
i.e., f must be additive in that case, which has been proved for the first time
in [30] and next in [6] on the restricted domain.

The hyperstability term was used for the first time probably in [32]; however,
it seems that the first hyperstability result was published in [3] and concerned
the ring homomorphisms. For further information concerning the notion of
hyperstability we refer to the survey paper [9] (for recent related results see,
e.g., [2, 5–7,13–15,22,26–28,31,33,34,42]).
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The theory of 2-normed spaces was first developed by Gähler [18] in the
mid 1960’s, while that of 2-Banach spaces was studied later by Gähler [19] and
White [41]. For more details, the readers refer to the papers [12,16,17].

Now, we give some basic concepts concerning (2, β)-normed spaces and some
preliminary results. We fix a real number β with 0 < β ¬ 1 and let E be a
linear space over K with dimE > 1. A function ‖·, ·‖β : E × E → R+ is called
a (2, β)-norm on E if and only if it satisfies:

(D1) ‖x, y‖β = 0 if and only if x and y are linearly dependent;
(D2) ‖x, y‖β = ‖y, x‖β ;
(D3) ‖λx, y‖β = |λ|β‖x, y‖β ;
(D4) ‖x, y + z‖β ¬ ‖x, y‖β + ‖x, z‖β

for all x, y, z ∈ E and λ ∈ K. The pair (E, ‖·, ·‖β) is called a (2, β)-normed
space.

If x ∈ E and ‖x, y‖β = 0 for all y ∈ E, then x = 0. Moreover, the function
x→ ‖x, y‖β is a continuous function of E into R+ for each fixed y ∈ E.

The basic definitions of a (2, β)-Banach space are given as follows:

(a) A sequence {xn} in a (2, β)-normed space E is called a Cauchy se-
quence if there are y, z ∈ E such that y and z are linearly independent,
limn,m→∞ ‖xn − xm, y‖β = 0 and limn,m→∞ ‖xn − xm, z‖β = 0.

(b) A sequence {xn} in a linear (2, β)-normed space E is called a convergent
sequence if there is an x ∈ E such that limn→∞ ‖xn − x, y‖β = 0 for
all y ∈ E. In this case, we write limn→∞ xn = x.

(c) A (2, β)-normed space in which every Cauchy sequence is a convergent
sequence is called a (2, β)-Banach space.

We remark that the concept of a linear (2, β)-normed space is a generalization
of a linear 2-normed space (β = 1). Now, we present an example about (2, β)-
normed space.

Example 1. For x = (x1, x2), y = (y1, y2) ∈ E = R2, the (2, β)-norm on E is
defined by

‖x, y‖β = |x1y2 − x2y1|β ,
where β is a fixed real number with 0 < β ¬ 1.

Let X be a β-normed spaces and Y a (2, β)-normed spaces. We say that a
function f : X → Y satisfies the general linear equation if

f(ax+ by) = rf(x) + sf(y), x, y ∈ X,(1.6)

where a, b ∈ F\{0} and r, s ∈ K. We see that for a = b = r = s = 1 in (1.6)
we get the Cauchy equation while the Jensen equation corresponds to a = b =
r = s = 1

2 . The general linear equation has been studied by many authors, in
particular the results of the stability can be found in [8,11,21,24,25,29,35,36].

Let U be a nonempty subset of X. We say that a function f : U → Y fulfils
equation (1.6) on U (or is a solution to (1.6) on U) provided it satisfies the
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conditional functional equation

f(ax+ by) = rf(x) + sf(y), x, y ∈ U, ax+ by ∈ U,(1.7)

where a, b ∈ F\{0} and r, s ∈ K.
If U = X, then we simply say that f fulfils (or is a solution to) equation

(1.6) on X.
We consider functions f : U → Y fulfilling (1.7) approximately, i.e., satisfy-

ing the inequality∥∥f(ax+ by)−rf(x)−sf(y), z
∥∥
β
¬γ(x, y, z), z∈Y, x, y∈U, ax+by∈U,(1.8)

with γ : U × U × Y → R+ is a given mapping. In this paper, we show that,
for some conditions on γ (and under some additional assumptions on U), the
conditional functional equation (1.7) is γ-hyperstable in the class of functions
f : U → Y , i.e., each f : U → Y satisfying inequality (1.8) with such γ must
fulfil equation (1.7).

2. A fixed point theorem

In this section, we rewrite the fixed point theorem [10, Theorem 1] in (2, β)-
Banach space. For it we need to introduce the following hypotheses.
(H1) W is a nonempty set and Y is a (2, β)-Banach space.
(H2) f1, . . . , fk : W →W and L1, . . . , Lk : W → R+ are given maps.
(H3) T : YW → YW is an operator satisfying the inequality

‖T ξ(x)− T µ(x), z‖β ¬
k∑
i=1

Li(x) ‖ξ(fi(x))− µ(fi(x)), z‖β

for all ξ, µ ∈ YW and (x, z) ∈W × Y .

(H4) Λ : R+W → RW+ is a linear operator defined by

Λδ(x) :=
k∑
i=1

Li(x)δ(fi(x))

for all δ ∈ RW+ and x ∈W .
The basic tool in this paper is the following fixed point theorem.

Theorem 2.1. Assume that hypotheses (H1)-(H4) are satisfied. Suppose that
there are functions ε : W → R+ and ϕ : W → Y such that

‖T ϕ(x)− ϕ(x), z‖β ¬ ε(x), (x, z) ∈W × Y

ε∗(x) :=
∞∑
n=0

Λnε(x) <∞, x ∈W.

Then, there exists a unique fixed point ψ of T with

‖ϕ(x)− ψ(x), z‖β ¬ ε
∗(x), (x, z) ∈W × Y.
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Moreover
ψ(x) = lim

n→∞
T nϕ(x), x ∈W.

Proof. As in the proof of [10, Theorem 1], we can prove Theorem 2.1. �

3. Hyperstability results for Eq. (1.7)

In the remaining part of the paper, X is a β-normed spaces, Y is a (2, β)-
Banach space, X0 := X \ {0}, and Nm0 denotes the set of all positive integers
greater than or equal to a given m0 ∈ N.

The following theorems are the main results in this paper and concern the
γ-hyperstability of (1.7). Namely, for

γ(x, y, z) = h1(x, z)h2(y, z),

with h1, h2 : U × Y → R+ being two functions and

γ(x, y, z) = h(x, z) + h(y, z),

with h : U × Y → R+ being a function, under some additional assumptions on
the functions h, h1, h2 and on nonempty U ⊂ X, we show that the conditional
functional equation (1.7) is γ-hyperstable in the class of functions f mapping
U to a (2, β)-normed space.

Theorem 3.1. Assume that U ⊂ X0 is nonempty and there is n0 ∈ N, n0 ­ 2
with

(3.1)
(

1− 1
n

)
x

a
,

x

bn
∈ U, x ∈ U, n ∈ N, n ­ n0,

where a, b ∈ F\{0}. Let r, s ∈ K, 0 < β ¬ 1 and h1, h2 : U × Y → R+ be two
functions such that

M0 :=

{
n ∈ Nn0 : αn := |r|βσ1

(
n−1
an

)
σ2
(
n−1
an

)
+ |s|βσ1

(
1
bn

)
σ2
(
1
bn

)
< 1

}
6= ∅,

(3.2)

where σi(n) := inf{t ∈ R+ : hi(nx, z) ¬ thi(x, z) for all (x, z) ∈ U × Y } for
n ∈ F\{0} and i = 1, 2, such that

lim
n→∞

σ1

(
n− 1
an

)
σ2

(
n− 1
an

)
= lim
n→∞

σ1

(
1
bn

)
σ2

(
1
bn

)
(3.3)

= lim
n→∞

σ1

(
n− 1
an

)
σ2

(
1
bn

)
= 0,

where n → ∞ in F if and only if |n| → ∞. Suppose that f : U → Y satisfies
the inequality

‖f(ax+ by)− rf(x)− sf(y), z‖β
¬ h1(x, z)h2(y, z), z ∈ Y, x, y ∈ U, ax+ by ∈ U,

(3.4)

with r, s ∈ K, then (1.7) holds.
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Proof. Replacing (x, y) by
((

1− 1
m

)
x
a ,

x
bm

)
in (3.4), we get

(3.5)

∥∥∥∥f(x)− rf
((

1− 1
m

)
x

a

)
− sf

( x

bm

)
, z

∥∥∥∥
β

¬ h1

((
1− 1

m

)
x

a
, z

)
h2

( x

bm
, z
)

for all m ∈ Nn0 and (x, z) ∈ U × Y. Fix m ∈ Nn0 and we define

Tmξ(x) := rξ

((
1− 1

m

)
x

a

)
+ sξ

( x

bm

)
, ξ ∈ Y U ,

Λmδ(x) := |r|βδ
((

1− 1
m

)
x

a

)
+ |s|βδ

( x

bm

)
, δ ∈ RU+

for every x ∈ U . Further, observe that

εm(x) : = h1

((
1− 1

m

)
x

a
, z

)
h2

( x

bm
, z
)

¬ σ1
(
m− 1
am

)
σ2

(
1
bm

)
h1(x, z)h2(x, z)(3.6)

for all (x, z) ∈ U × Y . Then inequality (3.5) takes the form

‖Tmf(x)− f(x), z‖β ¬ εm(x), (x, z) ∈ U × Y

and the operator Λm has the form described in (H4) with k = 2,

f1(x) =
(

1− 1
m

)
x

a
, f2(x) =

x

bm
, L1(x) = |r|β , L2(x) = |s|β

for all x ∈ U . Moreover, for every ξ, µ ∈ Y U and (x, z) ∈ U × Y , we obtain

‖Tmξ(x)− Tmµ(x), z‖β ¬ |r|
β ‖(ξ − µ)(f1(x)), z‖β + |s|β ‖(ξ − µ)(f2(x)), z‖β

=
2∑
i=1

Li(x) ‖(ξ − µ)(fi(x)), z‖β ,

where (ξ − µ)(x) ≡ ξ(x)− µ(x). So, (H3) is valid for Tm.
By using mathematical induction, we will show that for each (x, z) ∈ U ×Y

we have

Λnmεm(x) ¬ σ1
(
m− 1
am

)
σ2

(
1
bm

)
αnmh1(x, z)h2(x, z),(3.7)

for all n ∈ N0 and m ∈ M0. From (3.6), we obtain that the inequality (3.7)
holds for n = 0. Next, we will assume that (3.7) holds for n = l, where l ∈ N0.
Then we have

Λl+1m εm(x) = Λm(Λlmεm(x))

= |r|βΛlmεm

((
1− 1

m

)
x

a

)
+ |s|βΛlmεm

( x

bm

)
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¬ |r|βσ1
(
m− 1
am

)
σ2

(
1
bm

)
αlmh1

((
1− 1

m

)
x

a
, z

)
h2

((
1− 1

m

)
x

a
, z

)
+ |s|βσ1

(
m− 1
am

)
σ2

(
1
bm

)
αlmh1

( x

bm
, z
)
h2

( x

bm
, z
)

¬ σ1

(
m− 1
am

)
σ2

(
1
bm

)
αl+1m h1(x, z)h2(x, z).

This shows that (3.7) holds for n = l + 1. Now we can conclude that the
inequality (3.7) holds for all n ∈ N0. Therefore, we obtain that

ε∗m(x) : =
∞∑
n=0

Λnmεm(x)

¬
σ1
(
m−1
am

)
σ2
(
1
bm

)
h1(x, z)h2(x, z)

1− αm
, (x, z) ∈ U × Y, m ∈M0.

Thus, according to Theorem 2.1, for each m ∈M0 the function Lm : U → Y ,
given by Lm(x) = limn→∞ T nmf(x) for x ∈ U , is a unique fixed point of Tm,
i.e.,

Lm(x) = rLm

((
1− 1

m

)
x

a

)
+ sLm

( x

bm

)
for all x ∈ U ; moreover

‖f(x)− Lm(x), z‖β

¬
σ1
(
m−1
am

)
σ2
(
1
bm

)
h1(x, z)h2(x, z)

1− αm
, (x, z) ∈ U × Y, m ∈M0.

We show that

‖T nmf(ax+ by)− rT nmf(x)− sT nmf(y), z‖β ¬ αnmh1(x, z)h2(y, z)(3.8)

for every n ∈ N0, m ∈M0, z ∈ Y and x, y ∈ U with ax+ by ∈ U .
Clearly, if n = 0, then (3.8) is simply (3.4). So, fix n ∈ N ∪ {0} and suppose

that (3.8) holds for n and every z ∈ Y and x, y ∈ U with ax + by ∈ U . Then,
for every m ∈M0, z ∈ Y and x, y ∈ U with ax+ by ∈ U ,∥∥T n+1m f(ax+ by)− rT n+1m f(x)− sT n+1m f(y), z

∥∥
β

=

∥∥∥∥∥rTmf
((

1− 1
m

)
ax+ by

a

)
+ sTmf

(
ax+ by

bm

)
− r2Tmf

((
1− 1

m

)
x

a

)

− rsTmf
( x

bm

)
− rsTmf

((
1− 1

m

)
y

a

)
− s2Tmf

( y

bm

)
, z

∥∥∥∥∥
β

¬ |r|β
∥∥∥∥∥Tmf

((
1− 1

m

)
ax+ by

a

)
− rTmf

((
1− 1

m

)
x

a

)
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− sTmf
((

1− 1
m

)
y

a

)
, z

∥∥∥∥∥
β

+ |s|β
∥∥∥∥∥Tmf

(
ax+ by

bm

)
− rTmf

( x

bm

)
− sTmf

( y

bm

)
, z

∥∥∥∥∥
β

¬ |r|βαnmh1
((

1− 1
m

)
x

a
, z

)
h2

((
1− 1

m

)
y

a
, z

)
+ |s|βαnmh1

( x

bm
, z
)
h2

( y

bm
, z
)

¬ αn+1m h1(x, z)h2(y, z).

Thus, by induction, we have shown that (3.8) holds for all z ∈ Y and x, y ∈ U
such that ax + by ∈ U and for all n ∈ N0. Letting n → ∞ in (3.8), we obtain
that

Lm(ax+ by) = rLm(x) + sLm(y)(3.9)

for every m ∈M0 and x, y ∈ U with ax+ by ∈ U.
In this way, for each m ∈M0, we obtain a function Lm such that (3.9) holds

for x, y ∈ U with ax+ by ∈ U and

‖f(x)− Lm(x), z‖β

¬
σ1
(
m−1
am

)
σ2
(
1
bm

)
h1(x, z)h2(x, z)

1− αm
, (x, z) ∈ U × Y, m ∈M0.

It follows, with m→∞, that f fulfils (1.7). �

In a similar way we can prove the following theorem.

Theorem 3.2. Let U be a nonempty subset of X0 and there is n0 ∈ N, with

(3.10) −n
a
x,

n+ 1
b

x ∈ U, x ∈ U, n ∈ N, n ­ n0,

where a, b ∈ F\{0}. Let r, s ∈ K, 0 < β ¬ 1 and h : U × Y → R+ be a function
such that

M0 :=

{
n ∈ Nn0 : dn := |r|βσ

(
−n
a

)
+ |s|βσ

(
n+ 1
b

)
< 1

}
6= ∅,(3.11)

where σ(n) := inf{t ∈ R+ : h(nx, z) ¬ th(x, z) for all (x, z) ∈ U × Y } for
n ∈ F\{0}, such that

(3.12) lim
n→∞

σ(n) = lim
n→∞

σ(−n) = 0,

where n→∞ in F if and only if |n| → ∞. If f : U → Y satisfies the functional
inequality

‖f(ax+ by)− rf(x)− sf(y), z‖β ¬ h(x, z) + h(y, z),(3.13)

z ∈ Y, x, y ∈ U, ax+ by ∈ U,
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then (1.7) holds.

Proof. Replacing (x, y) by
(
−ma x,

m+1
b x

)
in (3.13), we get

∥∥∥∥f(x)− rf
(
− m

a
x
)
− sf

(m+ 1
b

x
)
, z

∥∥∥∥
β

¬ h
(
−m
a
x, z
)

+ h

(
m+ 1
b

x, z

)(3.14)

for all (x, z) ∈ U × Y and m ∈ Nn0 . Let

εm(x) : = h
(
−m
a
x, z
)

+ h

(
m+ 1
b

x, z

)
¬
(
σ
(
−m
a

)
+ σ

(
m+ 1
b

))
h(x, z)(3.15)

Tmξ(x) := rξ
(
− m

a
x
)

+ sξ
(m+ 1

b
x
)

for x ∈ U , m ∈ Nn0 and ξ ∈ Y U . Then inequality (3.14) takes the form

‖Tmf(x)− f(x), z‖β ¬ εm(x), (x, z) ∈ U × Y, m ∈ Nn0 .

Write

Λmδ(x) = |r|βδ
(
− m

a
x
)

+ |s|βδ
(m+ 1

b
x
)

for x ∈ U , m ∈ Nn0 and δ ∈ RU+. Then, for each m ∈ Nn0 , operator Λm has the
form described in (H4) with k = 2 and

f1(x) ≡ −m
a
x, f2(x) ≡ m+ 1

b
x, L1(x) ≡ |r|β , L2(x, y) ≡ |s|β .

Moreover, for every ξ, µ ∈ Y U , m ∈ Nn0 and (x, z) ∈ U × Y , we have

‖Tmξ(x)− Tmµ(x), z‖β = ‖r(ξ − µ)(f1(x)) + s(ξ − µ)(f2(x)), z‖β

¬
2∑
i=1

Li(x) ‖(ξ − µ)(fi(x, y)), z‖β .

So, (H3) is valid for Tm.
Next, it is clear that, by induction on n, from (3.15) we obtain

Λnmεm(x) ¬
(
σ
(
−m
a

)
+ σ

(
m+ 1
b

))
dnmh(x, z)(3.16)

for all n ∈ N0 and m ∈M0. Therefore, we obtain that

ε∗m(x) : =
∞∑
n=0

Λnmεm(x)

¬
(
σ
(
−ma

)
+ σ

(
m+1
b

))
h(x, z)

1− dm
, (x, z) ∈ U × Y, m ∈M0.
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Thus, according to Theorem 2.1, for each m ∈ M0 the function Lm : U → Y ,
given by Lm(x) = limn→∞ T nmf(x) for x ∈ U , is a unique fixed point of Tm,
i.e.,

Lm(x) = rLm

(
− m

a
x
)

+ sLm

(m+ 1
b

x
)

for all x ∈ U ; moreover

‖f(x)− Lm(x), z‖β ¬
(
σ
(
−ma

)
+ σ

(
m+1
b

))
h(x, z)

1− dm
, (x, z) ∈ U × Y, m ∈M0.

Similarly as in the proof of Theorem 3.1 we show that

‖T nmf(ax+ by)− rT nmf(x)− sT nmf(y), z‖β ¬ dnm
(
h(x, z) + h(y, z)

)
(3.17)

for every n ∈ N0, m ∈ M0, z ∈ Y and x, y ∈ U with ax + by ∈ U . Also the
remaining reasonings are analogous as in the proof of that theorem. �

The next theorems shows the hyperstability of the general linear equation
for U = X. In 2015, Brzdęk [8] proved the following result.

Lemma 3.1 ([8]). Assume that E1 is a linear space over a field F, E2 is a
linear space over a field K, a, b ∈ F\{0}, r, s ∈ K and f : E1 → E2 satisfies

f(ax+ by) = rf(x) + sf(y), x, y ∈ E1\{0}.

Then f satisfies the equation

f(ax+ by) = rf(x) + sf(y), x, y ∈ E1.

Using the above theorems and Lemma 3.1, we obtain the following results.

Theorem 3.3. Let r, s ∈ K, 0 < β ¬ 1 and h1, h2 : X × Y → R+ be two func-
tions such that (3.2) is an infinite set, where σi(n) := inf{t ∈ R+ : hi(nx, z) ¬
thi(x, z) for all (x, z) ∈ X × Y } for n ∈ F\{0} and i = 1, 2, such that (3.3)
holds. If f : X → Y satisfies (3.4) for all z ∈ Y and x, y ∈ X\{0}, then f
satisfies the equation

f(ax+ by) = rf(x) + sf(y), x, y ∈ X.

Theorem 3.4. Let r, s ∈ K, 0 < β ¬ 1 and h : X × Y → R+ be a functions
such that (3.11) is an infinite set, where σ(n) := inf{t ∈ R+ : h(nx, z) ¬
th(x, z) for all (x, z) ∈ X × Y } for n ∈ F\{0}, such that

lim
n→∞

σ(n) = lim
n→∞

σ(−n) = 0.

If f : X → Y satisfies (3.13) for all z ∈ Y and x, y ∈ X\{0}, then f satisfies
the equation

f(ax+ by) = rf(x) + sf(y), x, y ∈ X.

According to Theorems 3.1, 3.2 and the same technique as in the proof of
[8, Corollary 4.8], we get the following corollaries.
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Corollary 3.1. Let U be a nonempty subset of X0 fulfilling condition (3.1)
with some n0 ∈ N, n0 ­ 2. Let F : U2 → Y be a given mapping and h1, h2 :
U ×Y → R+ be two functions such that (3.2) is an infinite set, where σi(n) :=
inf{t ∈ R+ : hi(nx, z) ¬ thi(x, z) for all (x, z) ∈ U × Y } for n ∈ F\{0} and
i = 1, 2, such that (3.3) holds. Suppose that f : U → Y satisfies the condition

‖f(ax+ by)− rf(x)− sf(y)− F (x, y), z‖β(3.18)

¬ h1(x, z)h2(y, z), z ∈ Y, x, y ∈ U, ax+ by ∈ U,

and the functional equation

g(ax+ by) = rg(x) + sg(y) + F (x, y), x, y ∈ U, ax+ by ∈ U(3.19)

has a solution f0 : U → Y, where a, b ∈ F\{0} and r, s ∈ K. Then f is a
solution of (3.19).

Corollary 3.2. Let U be a nonempty subset of X0 fulfilling condition (3.10)
with some n0 ∈ N. Let F : U2 → Y be a given mapping and h : U × Y → R+
be a function such that (3.11) is an infinite set, where σ(n) := inf{t ∈ R+ :
h(nx, z) ¬ th(x, z) for all (x, z) ∈ U × Y } for n ∈ F\{0}, such that

lim
n→∞

σ(n) = lim
n→∞

σ(−n) = 0.

Suppose that f : U → Y satisfies the condition

‖f(ax+ by)− rf(x)− sf(y)− F (x, y), z‖β(3.20)

¬ h(x, z) + h(y, z), z ∈ Y, x, y ∈ U, ax+ by ∈ U,

and the functional equation

g(ax+ by) = rg(x) + sg(y) + F (x, y), x, y ∈ U, ax+ by ∈ U,(3.21)

has a solution f0 : U → Y, where a, b ∈ F\{0} and r, s ∈ K. Then f is a
solution of (3.21).

Remark 1. It is easily seen that (under the assumptions of Corollary 3.1 (or
Corollary 3.2)) in the case r+s 6= 1 and K is a constant function, F (x, y) ≡ K,
(3.19) (or (3.21)) admits a constant solution of the form

f0(x) =
K

1− r − s
, x ∈ U.

4. Some particular cases

At the end of this paper, we derive some corollaries of our main results.

Corollary 4.1. Assume that U ⊂ X0 is nonempty and there is n0 ∈ N, n0 ­ 2
with

(4.1) 2
(

1− 1
n

)
x,

2x
n
∈ U, x ∈ U, n ∈ N, n ­ n0.
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Let h1, h2 : U × Y → R+ be two functions such that

M0 :=
{
n ∈ Nn0 : 2−βσ1

(
2n−2
n

)
σ2
(
2n−2
n

)
+ 2−βσ1

(
2
n

)
σ2
(
2
n

)
< 1
}
6= ∅,

(4.2)

where σi(n) := inf{t ∈ R+ : hi(nx, z) ¬ thi(x, z) for all (x, z) ∈ U × Y } for
n ∈ F\{0} and i = 1, 2, such that

lim
n→∞

σ1

(
2n− 2
n

)
σ2

(
2n− 2
n

)
= lim
n→∞

σ1

(
2
n

)
σ2

(
2
n

)
(4.3)

= lim
n→∞

σ1

(
2n− 2
n

)
σ2

(
2
n

)
= 0.

If f : U → Y satisfies∥∥∥f(1
2

(x+ y)
)
− 1

2
(f(x) + f(y)), z

∥∥∥
β

¬ h1(x, z)h2(y, z), z ∈ Y, x, y ∈ U, 1
2

(x+ y) ∈ U,

then f is Jensen on U , i.e.,

f
(1

2
(x+ y)

)
=

1
2

(f(x) + f(y)), x, y ∈ U, 1
2

(x+ y) ∈ U.(4.4)

Proof. Letting a = b = r = s = 1
2 in Theorem 3.1, we get the desired result. �

Corollary 4.2. Let U be a nonempty subset of X0 and there is n0 ∈ N, with

(4.5) −x, nx ∈ U, x ∈ U, n ∈ N, n ­ n0.

Let h : U × Y → R+ be a function such that

M0 :=

{
n ∈ Nn0 : 2−βσ(−2n) + 2−βσ (2n+ 2) < 1

}
6= ∅,(4.6)

where σ(±n) := inf{t ∈ R+ : h(nx, z) ¬ th(x, z) for all (x, z) ∈ U × Y } for
n ∈ N, such that

lim
n→∞

σ(n) = lim
n→∞

σ(−n) = 0.

If f : U → Y satisfies∥∥∥f(1
2

(x+ y)
)
− 1

2
(f(x) + f(y)), z

∥∥∥
β

¬ h(x, z) + h(y, z), z ∈ Y, x, y ∈ U, 1
2

(x+ y) ∈ U,

then (4.4) holds.

Proof. Letting a = b = r = s = 1
2 in Theorem 3.2, we get the desired result. �
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Corollary 4.3. Let U be a nonempty subset of X0 fulfilling condition (4.1)
with some n0 ∈ N, n0 ­ 2. Let J : U2 → Y be a given mapping and h1, h2 :
U ×Y → R+ be two functions such that (4.2) is an infinite set, where σi(n) :=
inf{t ∈ R+ : hi(nx, z) ¬ thi(x, z) for all (x, z) ∈ U × Y } for n ∈ F\{0} and
i = 1, 2, such that (4.3) holds. Suppose that f : U → Y satisfies the condition∥∥∥f(1

2
(x+ y)

)
− 1

2
(f(x) + f(y))− J(x, y), z

∥∥∥
β

¬ h1(x, z)h2(y, z), z ∈ Y, x, y ∈ U, 1
2

(x+ y) ∈ U,

and the functional equation

g
(1

2
(x+ y)

)
=

1
2

(g(x) + g(y)) + J(x, y), x, y ∈ U, 1
2

(x+ y) ∈ U,(4.7)

has a solution g0 : U → Y . Then f is a solution of (4.7).

Corollary 4.4. Let U be a nonempty subset of X0 fulfilling condition (4.5)
with some n0 ∈ N. Let J : U2 → Y be a given mapping and h : U × Y → R+
be a function such that (4.6) is an infinite set, where σ(±n) := inf{t ∈ R+ :
h(nx, z) ¬ th(x, z) for all (x, z) ∈ U × Y } for n ∈ N, such that

lim
n→∞

σ(n) = lim
n→∞

σ(−n) = 0.

Suppose that f : U → Y satisfies the condition∥∥∥f(1
2

(x+ y)
)
− 1

2
(f(x) + f(y))− J(x, y), z

∥∥∥
β

¬ h(x, z) + h(y, z), z ∈ Y, x, y ∈ U, 1
2

(x+ y) ∈ U,

and the equation (4.7) has a solution f0 : U → Y . Then f is a solution of
(4.7).

Corollary 4.5. Let U be a nonempty subset of X0 fulfilling condition (4.5)
with some n0 ∈ N. Let h : U × Y → R+ be a function such that

M0 :=

{
n ∈ Nn0 : σ (−n) + σ (n+ 1) < 1

}
6= ∅,(4.8)

where σ(±n) := inf{t ∈ R+ : h(nx, z) ¬ th(x, z) for all (x, z) ∈ U × Y } for
n ∈ N, such that

lim
n→∞

σ(n) = lim
n→∞

σ(−n) = 0.

If f : U → Y satisfies the functional inequality

‖f(x+ y)− f(x)− f(y), z‖β ¬ h(x, z) + h(y, z), z ∈ Y, x, y ∈ U, x+ y ∈ U,
then f is additive on U, i.e.,

f(x+ y) = f(x) + f(y), x, y ∈ U, x+ y ∈ U.

Proof. Letting a = b = r = s = 1 in Theorem 3.2, we get the desired result. �
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Corollary 4.6. Let U be a nonempty subset of X0 fulfilling condition (4.5)
with some n0 ∈ N. Let C : U2 → Y be a given mapping and h : U × Y → R+
be a function such that (4.8) is an infinite set, where σ(±n) := inf{t ∈ R+ :
h(nx, z) ¬ th(x, z) for all (x, z) ∈ U × Y } for n ∈ N, such that

lim
n→∞

σ(n) = lim
n→∞

σ(−n) = 0.

If f : U → Y satisfies the functional inequality

‖f(x+ y)− f(x)− f(y)− C(x, y), z‖β
¬ h(x, z) + h(y, z), z ∈ Y, x, y ∈ U, x+ y ∈ U,

and the functional equation

h(x+ y) = h(x) + h(y) + C(x, y), x, y ∈ U, x+ y ∈ U,(4.9)

has a solution h0 : U → Y, then f is a solution of (4.9).

According to Theorem 3.1, Theorem 3.2 and Corollary 3.1 and Corollary 3.2
with h(x, z) := c‖x‖pβ‖z, w‖β and hi(x, z) := ci‖x‖piβ ‖z, w‖

1/2
β for all (x, z) ∈

U × Y and for some arbitrary element w ∈ Y where c, p, ci, pi ∈ R for i = 1, 2,
we get the improvement of the main result of Piszczek [34] in (2, β)-Banach
space as follows:

Corollary 4.7. Let U be a nonempty subset of X0 fulfilling condition (3.1)
with some n0 ∈ N, n0 ­ 2. If f : U → Y satisfies the functional inequality

‖f(ax+ by)− rf(x)− sf(y), z‖β
¬ c‖x‖pβ‖y‖

q
β‖z, w‖β , z ∈ Y, x, y ∈ U, ax+ by ∈ U,

for some fixed element w ∈ Y , c ­ 0, r, s ∈ K and p, q ∈ R such that p+ q > 0,
q > 0 and |r| < |a|p+q, then (1.7) holds.

Corollary 4.8. Let U be a nonempty subset of X0 fulfilling condition (3.10)
with some n0 ∈ N. If f : U → Y satisfies the functional inequality

‖f(ax+ by)− rf(x)− sf(y), z‖β
¬ c(‖x‖pβ + ‖y‖pβ)‖z, w‖β , z ∈ Y, x, y ∈ U, ax+ by ∈ U,

for some fixed element w ∈ Y , c ­ 0, r, s ∈ K and p ∈ R such that p < 0, then
(1.7) holds.

Corollary 4.9. Let U be a nonempty subset of X0, F : U2 → Y be a given
mapping and w be a fixed element of Y . Suppose that f : U → Y satisfies the
condition

‖f(ax+ by)− rf(x)− sf(y)− F (x, y), z‖β(4.10)

¬ c‖x‖pβ‖y‖
q
β‖z, w‖β , z ∈ Y, x, y ∈ U, ax+ by ∈ U,

or

‖f(ax+ by)− rf(x)− sf(y)− F (x, y), z‖β(4.11)
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¬ c
(
‖x‖pβ + ‖y‖pβ

)
‖z, w‖β , z ∈ Y, x, y ∈ U, ax+ by ∈ U,

and the functional equation

g(ax+ by) = rg(x) + sg(y) + F (x, y), x, y ∈ U, ax+ by ∈ U,(4.12)

has a solution f0 : U → Y, where c ­ 0, a, b ∈ F\{0}, r, s ∈ K and p, q ∈ R.
Assume that one of the following conditions is valid.

(i) p + q > 0, q > 0 |r| < |a|p+q and (3.1) holds with some n0 ∈ N and
n0 ­ 2, in the case f satisfies (4.10),

(ii) p < 0 and (3.10) holds with some n0 ∈ N, in the case f satisfies (4.11).

Then f is a solution to (4.12).
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