J. Korean Math. Soc. 36 (1999), No. 6, pp. 1047-1059

LOCAL CONNECTEDNESS IN FELL TOPOLOGY
K. Hur, J. R. MoON, AND C. J. RHEE

ABSTRACT. Let C(X) (Cx(X)) denote the hyperspace of all nonempty
closed connected subsets (subcontinua) of a locally compact Haus-
dorff space X with the Fell topology. We prove that the following
statements are equivalent:

(1) X is locally connected. (2) C(X) is locally connected. (3) C(X).
is locally connected at each £ € Cg(X). (4) Cx(X) is locally con-
nected.

1. Introduction

In 1962 Fell [2] introduced a topology 77, now it is called a Fell topol-
ogy, on the the collection [2¥] of all closed subsets (including the empty
set) of a topological spaces X and proved that ([2X],T}) is compact,
and is compact Hausdorff if X is locally compact, no matter how badly
unseparated X may be. This topology has proved to be the superior con-
struct in terms of applications, particularly application to optimization,
convex analysis, mathematical economics, probability theory, and the
theory of capacities (see the references quoted in [1]). While the prop-
erties of Vietoris topology parallel those of X closely, the Fell topology
is not in general.

The local connectivity of hyperspaces with the Vietoris topology has
been extensively studied .[3,4,5,8,11,12,13] but it is not with the Fell
topology. The purpose of this paper is to explore local properties of
some of subspaces of ([2%], 7}), namely local connectedness of the sub-
space C(X) (Cx(X)) of all nonempty closed connected subsets (subcon-
tinua) of X.
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1. Preliminary and fundamental properties in a Fell topology

Let X be a space. Let [2%] be the collection of all closed subsets of
X including the empty set, 2X the collection of all nonempty closed
subsets of X, KX(X) = {E € 2% : FE is compact}, C(X) = {E €
2X : E is connected }, Cx(X) = C(X) N K(X), Fu(X) = {E € 2% :
E has at most n elements} and F(X) = {E € 2X : E is finite}.

For ECX,let E-={Ac[2X]: ANE#0}, E*={Ac2X]: AC
E}. The Fell topology [2] Ty on [2%] has as a subbase all sets of the form
V~, where V is an open set of X plus all sets of the form (K¢)*, where
K is a compact subset of X and K° = X \ K.

Clearly we have three kinds of the form as the basic elements of T}
"~ Type 1. N, V;~, where each V; is open in X.
Type 2. (K°)*, where K is compact in X.
Type 3. (M,V;) N (K9)*.

For subsets F,...,E, of X, let (Ey,....,E,) = {A€2* : ANE,; #
@, foreachi = 1,...,n and A C UY,E;}. The Vietoris (finite) topology
(8] T, on 2% has as a base all sets of the form (Uy, ..., U,), where Uy, ..., U,
are open sets in X.

In order to distinguish subspaces in different hyperspace topologies,
we adopt the following: Let S C [2%]. The subspace S of ([2X],T})
is denote by (S,Ty) and, if S C 2X then the subspace S of (2%,T,) is
denoted by (S, T,).

Since the Vietoris Topology on 2% is finer than the Fell topology on
2X | some results in Fell topology derived from Vietoris topology (8], for
instance, Lemma 1.3 and Proposition 1.4, are included in this section.

In section 2, we investigate connectedness of (C(X), Ty) and (Ck, T¥).
Then we proceed to prove that, for a locally compact Hausdorff space X,
(C(X),Ty) is locally connected if and only if X is locally connected. In
doing so, we first prove that (Cx(X), Ty) is locally connected and dense
in (C(X)’ Tf)'

For notational purpose, small letters will denote elements of X, capi-
tal letters will denote subsets of X and elements of 2%, and script letters
will denote subsets of 2X. If A X, then A (resp., Int(A), Bd(A)) will
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denote the closure (resp., interior, boundary) of A in X.

PROPOSITION 1.1 [6]. Let X be a Hausdorff space. Then the Vi-
etoris topology T, on 2X is finer than the Fell topology Ty on 2X.

Furthermore, if we replace compact sets in the definition of the sub-
base for Ty by closed sets, then Ty and T, are equivalent. Hence if X is
compact Hausdorff, then Ty = T,,.

REMARK. Let X be a Hausdorff space. If (2%, T, ) is second countable
(metrizable, or compact), then T, = T;. If (2X,T,) is second countable
(metrizable or compact) then X is compact by [8, Theorem 4.6]. Hence
T, = T by Proposition 1.1.

THEOREM 1.2. [10]. The followings are equivalent:
(a) (2%, Ty) is HausdorfT.

(b) (2%, Ty) is regular.

(c) X is locally compact.

The following lemma is an easy consequence of Proposition 1.1.

LEMMA 1.3. Let X be a Hausdorff space. Then

(a) If B is a connected (compact) subset of (2X,T,), then it is a con-
nected (compact) subset of (2%, Ty).

(b) If D is dense in (2%, T,), it is also dense in (2%, T}).

PROPOSITION 1.4. Let X be a Hausdorff space.

(a) If f : Z — (2%, T,) is a continuous function, then f : Z — (2% T})
is continuous.

(b) The natural map f : X™ — (F,(X),T}), defined by f(zy,...,z,) =
{z1,...,zn} is a continuous surjection.

(c) Let f: (2%, Ty)" — (2%, T}) be defined by f(Ai, ..., A,) = UL, 4;.
Then f is continuous.

Proof. (a) This is an easy consequence of Proposition 1.1.

(b) Since the natural map f : X" — (F,(X),T,) is a continuous
surjection by [8, 2.4.3], hence by (a) it is a continuous surjection.

(c) We give proof for n = 2.
Let f: 2% x 2X — 2% be the function defined by f(A;, A2) = A; U As.
Let O € Ty such that f(A;, A;) = AU A, € O.
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Case 1. Suppose A; U A, e N7V, C O.
Let F = {(Vi,.,Vo}. Let ;i ={V, e F:Vin A # 0}, I, ={Vie F:
Ay NV; # 0}. We reindex the elements of F;; F1 = {V,,...,4,} and
Fo={Vay, .., Vo,}. Let Uy = N_ V7, and U, = ﬂ§=1V2;. Then U; x U, is
a neighborhood of (A;, A;). Let (A}, A3) € Uy x Uy. Then A] NV, # 0,
i=1,.,p,and ANV, # B for j=1,..,q. Thus (AJUAL) N Vi #0 for
k=1,2,..,n So (AjUA)) € Mp_,V,” and hence f(U) xU) C (NF_, V).

Case 2. Suppose A; U Ay € (NZ_, V)N (K9)* € O. Take UY; =
(0L, Vi) O (KS)Y, Uy = (M0,Vi) 1 (K9, where (2,V;, and M, V5
are defined as in Case 1. Then f(U; x Us) C (NF_, Vi) N(K°)*.

Case 3. Suppose A;U Ay € (K°)t C O. Take Y; = (K°)* fori=1,2.
Then it is easy to see that f(U; x Us) C (K°)*. O

PROPOSITION 1.5. (a) Let X be a Hausdorff space. If O is an open
subset of any one of the spaces (2X,Ty), (F(X),Ty), and (K(X),T}),
then UO =U{E : E € O} is open in X.

(b) Let X be a locally compact Hausdorff space. Let O be an open set
in (Cx(X),Ty) or (C(X),Ty). If {z} € O then there is a neighborhood
V of z in X such that V C UO.

Proof. (a) It suffices to show that if B is a basic element of (2%, Ty}),
then UBNY) =U{E : E € BN)Y} is open in X, where } is any one of
the spaces mentioned in (a).

Suppose B = (N2, V,7) N (K°)*, where K is compact in X and V] is
open in X for each i = 1,...,n. We show that U(BNY) = X \ K for each
Y. Choose a point z; € V;\ K foreachi=1,...,n. Foreach z € X \ K,
let B, = {1,...,2,,2}. Then E, is a closed (compact, finite) set and
E, e BNY for Y = 2%, F(X) or K(X). Hence z € E, C U(BNY)
for Y = 2%, F(X), or K(X). Therefore X \ K C U(BNY). Now let
z € U(BNY). Then z € E for some E € [(NZ,V;")N(K°)*]N)Y. Hence
re ECX\K.

In a similar manner, one can show that U(BNY) = X if B=nN,V,7,
and UBNY)= X\ K if B=(K°)".

(b) There exists a neighborhood V' of z in X with compact closure
and a compact set K with V C X \ K such that V = (V™ N (K°)*)
N Ck(X) is a neighborhood of {z} with V C O. Let K’ = V \ V and
W=(V N{(KUK"))*) N Ckg(X). Then {z} e WC V. Let E € W.
Then E C X\ K' = VU (X \ V). Since E is connected and ENV # 0,
E c V. Hence W = UW C V. On the other hand, for each y € V, we
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have {y} € W so that y € W. Hence UW =V is an open set contained
in UO. O

" PROPOSITION 1.5.1. Let X be a Hausdorff space. If O is an open set
in (Fn(X),Ty), then UO is open in X. In particular if O = [(N,V;7)N
(KY*1 N Fo(X), where V;’s are pairwise disjoint, then U0 = U?_(V,\ K).

Proof. Without loss of generality, let O = B N F,(X), where B =
(N, Vo) N (KoY, N, Vo, or (KT, Let U = UO and z € U. Then
there is an element £ € O such that x € E € O. Let E = {2, ...,z,}
and we may assume that z = z;. Suppose B = (NZ2,V,”7) N (K°)*. Let
S={W,...Vulandlet W =n{V; € S: z € V;} N (X\ K). Then
for each y € W, the element E, = {y, zs,...,z,} € B N F,(X). Hence
E, Cc U. This shows that z € W c U. If B = N, V;” or (K°)*, the
proofs are similar.

For the second part, let W = U2 ,(V; \ K) and U = UO. We show
first that W C U. Let z € W. Then z € V; \ K for some i. Let E € O
and {z;} = V;N E for each ¢ = 1,...,n. Then for each y € V;\ K,
E, ={z1,..,Zi-1,Y, ZTit1, .-, Lo} is an element of O. Hence V;\ K C U.
Thus it follows that W C U.

Let z € U. Then z € E € O for some E and {z} = ENV; for some
t. Since EC X\ K,z € V;\ K. Hence U C W. |

PROPOSITION 1.6. Let X be a topological space. Then:

(a) {E € 2X : E C A} is closed in (2%, T}) if A C X is closed.

(b) {E € 2X : EN A +#£ 0} is closed in (2%, T}) if A C X is compact
and X is Hausdorff.

Proof. (a) Let A= {E € 2¥ : E C A} and let B be a limit point of
A. Suppose B ¢ A. (ie, B ¢ A). Let b € B\ A. Since A is closed
and b & A, there is a neighborhood V' of b such that VN A = (. Then
B € V™ and V- N A = 0 which contradicts the fact that B is a limit
point of A.

(b) Let A= {E € 2X : EN A # 0}. Suppose there is an element
B € 2% which is a limit point of A but B ¢ A. Then there is an open
set V containing B such that VN A = 0. Then (A°)* is a neighborhood
of B which does not meet A, a contradiction. O

PROPOSITION 1.7. Let X be a locally compact Hausdorff space. If
B is a compact subset of (2%, Ty), then UB is closed in X.
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Proof. Let A= UB and = € A. Let F be the collection of neighbor-
hoods V of z such that V is compact. Foreach V € F,let Cy = BN{E €
2X : ENV # 0}. Since V is compact, Cy is closed in (2%, T}) by Propo-
sition 1.6(b). Also since X is locally compact, (2%, T}) is Hausdorff by
Theorem 1.2. So that each Cy is closed subset of the compact set B.
Then the collection {Cy : V € F} has the finite intersection property.
Suppose Cy;, i = 1,...,n is a finite subcollection. Then V =NV, € F
so that Cy C NZ_,Cy;. Since B is compact, this collection has a nonempty
intersection D. And each element E € D contains the point z. (if there
is some E € D such that x ¢ E, then there is an element V € F
such that VN E = 0. This would mean that E ¢ D.) Since D C B,
z€ E €D, xze A Hence A is closed. 0O

2. Connectedness and Local connectedness in Fell Topology

A compact connected Hausdorff space is called a continuum.

A space X is said to be locally connected at x € X if for each neighbor-
hood U of z there is a connected neighborhood V of z such that V C U.
The space X is said to be locally connected if X is locally connected at
each of its points.

A space X is said to be connected im kleinen at x € X if for each
neighborhood U of z there is a component of U which contains z in its
interior.

It is known that if X is connected im kleinen at each of its points,
then X is locally connected.

ProPOSITION 2.1. Let X be a Hausdorff space. Then:

(a) each F,(X) is a closed subset of (2%, Ty).

(b) if X is connected, then each of (Fn(X), T), (F(X), Ty), (K(X), T¥),
and (2%, Ty) is connected.

Proof. (a) Let E € 2% \ F,(X). Since X is Hausdorff, there exist
pairwise disjoint open sets, V4, ..., V, for some p > n such that V,NE # 0
fori =1,...,p. Then (N_,V;") N Fo(X) =0 and thus E € E_,V,” C
2X \ F,(X), where Nf_, V.~ is open in (2%, T}). Hence F,(X) is closed
in (2X,Tf).

(b) Since X is connected, each of F,(X), F(X), K(X), and 2% is
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connected in (2%, T,) by [8, Theorem 4.10]. Hence, by Proposition 1.3(a),
each of the hyperspaces is connected in (2%, T7). a

LEMMA 2.2 ([8], [3]). (a) Let Ay, ..., A, be connected subsets of a
Hausdorff space X. Then (Ay, ..., A,) is a connected subset of (2%, T,,).

(b) Let U be a connected open subset and Uy, ..., U,, be nonempty open
subsets of a Hausdorff space X such that U = U" * \Ui. Then (U4, ...,U,)
is connected in (2%, T,).

PROPOSITION 2.3. If X is a connected Hausdorff space, then (2%, TY)
is always locally connected at X.

Proof. Let N, V;™ be a basic neighborhood of X in (2X,7%). Then
N Vim = (W,.., Vo, X). Since X is connected, (V4,...,V,, X) is con-
nected subset in (2%, T,) by Lemma 2.2(b). So N,V,™ is connected in
(2%,T;) by Lemma 1.3(b). 0O

LEMMA 2.4. Let X be a locally compact Hausdorff space. If X
is connected and locally connected, then each compact subset of X is
contained in the interior of some subcontinuum of X.

Proof. Let K be a compact subset of X. Since X is locally connected
and locally compact, let {U},...,U,} be a finite open covering of K,
where each U; is open connected and U, compact Let a; € U; for each 1.
Then, for each i = 2,...,n, let Y; = {Vi;,, ..., Vi;, } be a simple chain from
a, to a;, where each V“ is connected, V;z compact, and a; € V;; and

a; € Vi;. Let U =U2,U;, and V; = U 1 Vii; for each 1 = 2,...,n. Then

K C (UL ZV)UU C (UL,V))UTU = N. It follows that N is compact and
connected in X. This completes the proof. O

PROPOSITION 2.5 (a) Let X be a locally connected regular space. If
O is an open subset of (C(X),Ty), the UO is open in X.

(b) Let X be a locally compact and locally connected Hausdorff space.
If O is an open set in (Cx(X),T}), then UQ is open in X.

Proof (a) We give proof for only one type of basic open set. Let
=[(N N(K°)*] N C(X) where (N2, V,")N(K*)* is a basis open

set in (2X Tf) LetU=Ul{andz € U. Then there is an element F € U
such that z € E. Since E is contained in the open set X \ K and X
is locally connected regular, there is a connected neighborhood V of z
such that V C X \ K. Then EUYV is a closed and connected subset
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contained in X \ K, and (EUV)NV; # 0 for each ¢ = 1,...,n. Hence
(EUV) €U. Therefore V C (EUV)CU.

The proof is similar for other type of basic open set.

(b) Again we give a proof for only one type of basic element. Let
B = (N2, V;7) N (K°)* be a basic element in 2. Let U = BN Ck(X).
Let U = UU. We wish to show that U is open in X. Let z € U. Then
there is an element E € U such that z € E. Since E C X\ K and X\ K
is an open subset of the locally compact locally connected Hausdorft
space X, there exists a connected neighborhood V' in X such that Vis
compact and V € X\K. Then EUV' e Uandz € V CVUECU. O

We will use the next lemma in several places.

LEMMA 2.6 [7]. If X is a compact connected Hausdorff space, then
(2X,T,) and (C(X), T,) are compact connected Hausdorff. In particular,
for each E € C(X), the set Lg = {F € C(X) : E C F} is a closed and
connected subset of C(X).

PROPOSITION 2.7. Let X be a compact Hausdorff space. If B is a
connected subset of (C(X),T}), then UB is connected in X. In particu-
lar, if B is a connected subset of (Cx(X),T}), then UB is connected in
X.

Proof. Let A = UB. Suppose A is not connected. Then there are two
nonempty disjoint sets A; and A, such that A = A; U Ay, A NAy =
0=ANA, Lt A ={E€B:ENA; #0}fori=12 It is clear
that A; # 0 for each i = 1,2. Since each E € B is connected, either
ECcAior ECc Ay. Thus AiNAy =0 and B = A U .A;. Let .,_4:~f
denote the closure of A; in T}. Suppose F' € A, ﬂ..A—gf. Then FNA; # 0
so that FF C A,. Let 2y € F and V be a neighborhood of zy. Then
FeV~. Since F € ;Tgf, there is an element F € Ay such that F € V.
Since E C Ay and ENV # 0, VN Ay # @. Thus zo € Ay. This is
a contradiction to the fact that A; N Ay = @. Hence A; N .»_4? = Q.
Similarly A; N Ay = 0 so that Z{ N Ay = 0. This means that B is not
connected which is a contradiction.

If B is a connected subset of (Ck(X), T¥), then it is a connected subset
of (C(X), Ty). Hence the conclusion follows. O

PROPOSITION 2.8. Let X be a compact Hausdorff space. Then X is
connected if and only if (Cx(X),Ty) is connected.
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Proof. Suppose X is connected. By Proposition 2.1, F;(X) is con-
nected, and contained in (Ck(X),Tf). For each A € Cx(X), C(A) is
a compact and connected subset of Cx(X) in (2%,T,) by Lemma 2.6
and hence compact and connected in (2%,7f) by Lemma 1.3. Since
Fi(X) N C(A) # 0 for each A € Cx(X) and Cx(X) = U{C(A) : A €

X)}, Ck(X) is a connected subset of (2%, T}).

Suppose (Cx(X), Ty) is connected. Since Cx(X) € C(X), by Propo-

sition 2.6, X = UCk(X) is connected. O

PROPOSITION 2.9. Let X be a locally compact Hausdorff space and
let x € X. Then the followings are equivalent:

(a) X is connected im kleinen at z.

(b) (Ck(X),Ty) is connected im kleinen at {z}.

(c) (C(X),Ty) is connected im kleinen at {z}.

Proof. (a) = (b). Suppose that X is connected im kleinen at z.
Let U = [U~ N (K)*] N Cx(X) be a basic neighborhood of {z} in
(Ck(X), Ty). Without loss of generality, we may assume without loss of
generality that U C X \ K. Let V be a neighborhood of z in X such
that V is compact and V € U. Let K’ = V\ V. Since X is connected im
kleinen at x, let M be the component of V which contains z in its interior,
and let W = Int(M). Then {z} e W = [W~ N ((K U K')°)*] N Cx(X)
C [V-N(K°)INCk(X) C U. We show that I has a component which
contains W. Let E € W. Then E C (X \(KUK')) = (X\K)N(X\K")
C VU(X\V). Since E is connected and ENV # 0, E C V. Since E and
M are compact subsets of V and EN M # 0, EUM is a subcontinuum
of V. Hence EUM € U. Now let Lg = {FeC(EUM):EC F}and
Ly ={F € C(EUM): M C F}. Then by Lemma 2.6 and Lemma
1.3, both Lg and L;; are compact and connected. If G & Ly, then
EcVcMcGCEUM. SoGell. Hence L3 C U. Similarly
Lg CU. Since EUM € LgN L7, LgU L3z is a connected subset of Y.
Also E € L, E and M are contained in a connected subset of I{. Thus
it follows that there is a component of &/ which contains W.

(b) = (a). Suppose that (Cx(X), Ty) is connected im kleinen at {z}.
Let U be a neighborhood of z in X. Let V' be a neighborhood of z such
that V is compact and V ¢ U. Then {z} €V = [V- N (K)"NCx(X)

C [UTN(K*)"NCk(X), where K =V \ V. Let C be the component of
V which contains {z} in its interior. Let E € C. Then E c VU (X \ V).
Since E is connected and ENV # 0, E C V. It follows that UC C V.
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Then by Proposition 1.5 (b) there is a neighborhood N of z such that
N c UInt(C). And by Proposition 2.7 UC is connected. Hence it follows
that X is connected im kleinen at x.

The proofs of (a) < (c) are identical with that of (a) < (b). O

PROPOSITION 2.10. Let X be a locally compact Hausdorff space. If
X is locally connected, then (Ck(X),Ty) is dense in (C(X), Ty).

Proof. Without loss of generality we may suppose that i/ = [(N2,V,”7)N
(K°)*] N C(X) is an open set in (C(X),Ty). Let E € U. Let C be the
component of X \ K which contains E. Also we may assume that V; C C
for each i = 1,...,n. Let z; € V; for each ¢ and let L = {zy,...,z,}.
Then, since C is a locally connected and connected open set containing
the compact set L, by Lemma 2.4, there exists a continuum M in C
containing E in its interior. Then M € U N Ck(X). Hence Ck(X) is
dense in (C(X), Ty). ’ O

COROLLARY 2.10.1. Let X be a locally compact and locally con-
nected Hausdorff space. Then X is connected if and only if (C(X), Ty)

is connected.

Proof. If X is connected, then (C(X), Ty) is connected by Proposition
2.8 and Proposition 2.10. If (C(X),T¥) is connected, then X = UC(X)
is connected by Proposition 2.7. 0

PROPOSITION 2.11. Let X be a locally compact Hausdorff space.
Then X is locally connected if and only if (Ck(X),Ty) is locally con-
nected.

Proof. Suppose X is locally connected. Let E € Cx(X) and let U =
(N2_,U7) N (K°)* be a basic open set in (2X,7}) such that E € U N
Ck(X). Let C be the component of X \ K containing E. Then C is a
connected open subset of X. Pick a point z; € U;NC foreachi =1, ..., n.
Let V; be a neighborhood of z; such that V; C U;NC for each . Let V =
(N2, V)N (K€)*. Then E € VN Ck(X) CUN Ck(X). We show that
YN Ck(X) is connected by showing that each element F' € VN Ck(X)
and E are contained in a connected subset of V N Ck(X).

Let F € VN Ck(X). Since F is connected, F' C C. Then by Lemma
2.4, there exists a continuum M in C containing the compact set EU F
in its interior. Now let Lp = {G € C(M): E C G} and Lr = {G €
C(M) : F C G}. Then by Lemma 2.6 both Lg and Lr are compact and
connected with respect to T,. Hence they are compact and connected
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with respect to Ty by Lemma 1.3. Clearly E, F € L U Lp. We show
that L U Lr is a connected subset of V N Ck (X )- Let G € Lp. Since
FCGCMCcCCand GNV, # 0 for each i, G € VN Cx(X). Hence
Lr CVNCk(X). Similarly Lz c VN Ck(X). Since M € Lg N L,
Lg U L is a connected subset of VN Ck(X). Hence we conclude that
VN Ck(X) is connected.

Suppose (Ck(X),Ty) is locally connected. Let z € X. Let U be
a neighborhood of z. Let V be a neighborhood of z such that V is
compact and V C U. Let K =V \V. Then V = (V-N(K)T) N Cx(X)
is a neighborhood of {z} in (Cx(X),T). Since (Cx(X),Ty) is locally
connected at {x}, there exists a connected open set W containing {x}
in (Ck(X),Ty) such that W C V. Let E € W. Then E € V. Since
ENV #0, EC VU(X\K) and E is connected, we have E C V.
This show that UW C V. Also by Proposition 1.5 (b), there exists a
neighborhood N of z such that N C UW and by Proposition 2.7, UW
is connected. This shows that X is connected im kleinen at z. Since X
is connected im kleinen at each of its points, it follows that X is locally
connected. g

PROPOSITION 2.12. Let X be a locally compact Hausdorff space.
The following statements are equivalent:

(a) X is locally connected.

(b) (C(X),Ty) is locally connected at each E € C(X).

(c) (C(X), Ty) is locally connected at each E € Ck(X).

Proof. (a) = (b). Let E € C(X) and E # X. Let U = (N2,U7) N
(K*)* be a basic neighborhood of E in (2%,T;). Then U N C(X) is a
neighborhood of E in (C(X),Ty). Let z; € ENU; for each i = 1, ..., n.
Since E C X \ K, there exists a connected neighborhood V; of z; such
that V; C U; N (X \ K) for each i. Let V = (M2, V) N (K®)*. Then
V C Y and VNC(X) is a neighborhood of F in (C(X), T}). Since Cx(X)
is dense in (C(X), Ty), VN Ck(X) is dense in VN C(X).

We show that V 1 C(X) is connected in (C(X), Tf) by showing that
any two elements of V N Ck(X) are contained in a connected subset
of VN Ck(X). Let W be the component of X \ K containing E. Let
Ay, Ay € V N Ck(X). Then A, U A; C W. By Lemma 2.4 there exists
a continuum @ C W containing A4; U A, in its interior. Let Ly, =
{F €C(Q): A, C F} for each i = 1,2. Then each £, is connected by
Lemma 2.6. For each F € L4, A; C F C W so that F N V; # 0 and
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F C X\ K. Hence F € V N Cg(X). Since A;,Q € Ly, La, U Ly,
is a connected subset of ¥V N Ck(X). Thus ¥V N Ck(X) is connected.
Therefore, V N C(X) is connected.

Suppose X is connected. Since an arbitrary neighborhood of X in
(2%, Ty) has the form V™, we choose V' to be a connected open set such
that V is compact. Then one can show in a similar manner as before
that V- NCk(X) is connected. Since V" NCk(X) is dense in V-NC(X),
V=N C(X) is connected. Hence (C(X),Ty) is locally connected at X.

(b) = (c) is obvious.

(c) = .(a). Let £ € X and U be a neighborhood of z in X. Let V be a
neighborhood of z such that V ¢ U and V is compact. Let K =V \ V.
Then {z} € (V- N(K°)")NC(X). Since (C(X),Ty) is locally connected
at {z}, there exists a connected open set U in (C(X),Ty) containing
{z} such that Y C (V- N (K°)*) N C(X). By Proposition 2.7 and
Proposition 1.5 (b), U is connected and contains a neighborhood N of
z. Let E€cU. Then E€ V- N(K®)* sothat EC X\ K =VU(X\V).
Since ENV # 0 and F is connected, £ C V. It follows that U/ C V.
This shows that X is connected im kleinen at z. It follows that X is
locally connected. _ a
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