• Title/Summary/Keyword: $u_1$

Search Result 15,227, Processing Time 0.041 seconds

RECURRENCE RELATIONS FOR QUOTIENT MOMENTS OF THE EXPONENTIAL DISTRIBUTION BY RECORD VALUES

  • LEE, MIN-YOUNG;CHANG, SE-KYUNG
    • Honam Mathematical Journal
    • /
    • v.26 no.4
    • /
    • pp.463-469
    • /
    • 2004
  • In this paper we establish some recurrence relations satisfied by quotient moments of upper record values from the exponential distribution. Let $\{X_n,\;n{\geq}1\}$ be a sequence of independent and identically distributed random variables with a common continuous distribution function F(x) and probability density function(pdf) f(x). Let $Y_n=max\{X_1,\;X_2,\;{\cdots},\;X_n\}$ for $n{\geq}1$. We say $X_j$ is an upper record value of $\{X_n,\;n{\geq}1\}$, if $Y_j>Y_{j-1}$, j > 1. The indices at which the upper record values occur are given by the record times {u(n)}, $n{\geq}1$, where u(n)=min\{j{\mid}j>u(n-1),\;X_j>X_{u(n-1)},\;n{\geq}2\} and u(1) = 1. Suppose $X{\in}Exp(1)$. Then $\Large{E\;\left.{\frac{X^r_{u(m)}}{X^{s+1}_{u(n)}}}\right)=\frac{1}{s}E\;\left.{\frac{X^r_{u(m)}}{X^s_{u(n-1)}}}\right)-\frac{1}{s}E\;\left.{\frac{X^r_{u(m)}}{X^s_{u(n)}}}\right)}$ and $\Large{E\;\left.{\frac{X^{r+1}_{u(m)}}{X^s_{u(n)}}}\right)=\frac{1}{(r+2)}E\;\left.{\frac{X^{r+2}_{u(m)}}{X^s_{u(n-1)}}}\right)-\frac{1}{(r+2)}E\;\left.{\frac{X^{r+2}_{u(m-1)}}{X^s_{u(n-1)}}}\right)}$.

  • PDF

CHARACTERIZATIONS OF THE WEIBULL DISTRIBUTION BY THE INDEPENDENCE OF RECORD VALUES

  • Chang, Se-Kyung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.279-285
    • /
    • 2008
  • This paper presents some characterizations of the Weibull distribution by the independence of record values. We prove that $X{\sim}Weibull(1,{\alpha})$, ${\alpha}>0$ if and only if $\frac{X_{U(n+1)}}{X_{U(n+1)}-X_{U(n)}}$ and $X_{U(n+1)}$ for $n{\geq}1$ are independent. We show that $X{\sim}Weibull(1,{\alpha})$, ${\alpha}>0$ if and only if $\frac{X_{U(n+1)}}{X_{U(n+1)}-X_{U(n)}}$ and $X_{U(n+1)}$ for $n{\geq}1$ are independent. And we establish that $X{\sim}Weibull(1,{\alpha})$, ${\alpha}>0$ if and only if $\frac{X_{U(n+1)}+X_{U(n)}}{X_{U(n+1)}-X_{U(n)}}$ and $X_{U(n+1)}$ for $n{\geq}1$ are independent.

  • PDF

CHARACTERIZATIONS OF THE PARETO DISTRIBUTION BY CONDITIONAL EXPECTATIONS OF RECORD VALUES

  • Lee, Min-Young
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.1
    • /
    • pp.127-131
    • /
    • 2003
  • Let X$_1$, X$_2$,... be a sequence of independent and identically distributed random variables with continuous cumulative distribution function F(x). X$_j$ is an upper record value of this sequence if X$_j$ > max {X$_1$,X$_2$,...,X$_{j-1}$}. We define u(n)=min{j$\mid$j> u(n-1), X$_j$ > X$_{u(n-1)}$, n $\geq$ 2} with u(1)=1. Then F(x) = 1-x$^{\theta}$, x > 1, ${\theta}$ < -1 if and only if (${\theta}$+1)E[X$_{u(n+1)}$$\mid$X$_{u(m)}$=y] = ${\theta}E[X_{u(n)}$\mid$X_{u(m)}=y], (\theta+1)^2E[X_{u(n+2)}$\mid$X_{u(m)}=y] = \theta^2E[X_{u(n)}$\mid$X_{u(m)}=y], or (\theta+1)^3E[X_{u(n+3)}$\mid$X_{u(m)}=y] = \theta^3E[X_{u(n)}$\mid$X_{u(m)}=y], n $\geq$ M+1$.

RECURRENCE RELATIONS FOR QUOTIENT MOMENTS OF THE WEIBULL DISTRIBUTION BY RECORD VALUES

  • Chang, Se-Kyung
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.471-477
    • /
    • 2007
  • In this paper we establish some recurrence relations satisfied by the quotient moments of the upper record values from the Weibull distribution. Suppose $X{\in}WEI({\lambda})\;then\;E(\frac {X^\tau_U(m)} {X^{s+1}_{U(n)}})=\frac{1}{(s-\lambda+1)}E(\frac {X^\tau_U(m)}{X^{s-\lambda+1}_{U(n-1)}})-\frac{1}{(s-\lambda+1)}+E(\frac{X^\tau_U(m)}{X^{s-\lambda+1}_{U(n)}})\;and\;E(\frac {X^{\tau+1}_{U(m)}}{X^s_{U(n)}})=\frac{1}{(r+\lambda+1)}E(\frac{X^{\tau+\lambda+1}_{U(m)}}{X^s_{U(n-1)}})-\frac{1}{(\tau+\lambda+1)}E(\frac{X^{\tau+\lambda+1}_{U(m-1)}}{X^s_{U(n-1)}})$.

RECURRENCE RELATIONS FOR QUOTIENT MOMENTS OF THE PARETO DISTRIBUTION BY RECORD VALUES

  • Lee, Min-Young;Chang, Se-Kyung
    • The Pure and Applied Mathematics
    • /
    • v.11 no.1
    • /
    • pp.97-102
    • /
    • 2004
  • In this paper we establish some recurrence relations satisfied by quotient moments of upper record values from the Pareto distribution. Let {$X_n,n\qeq1$}be a sequence of independent and identically distributed random variables with a common continuous distribution function(cdf) F($chi$) and probability density function(pdf) f($chi$). Let $Y_n\;=\;mas{X_1,X_2,...,X_n}$ for $ngeq1$. We say $X_{j}$ is an upper record value of {$X_{n},n\geq1$}, if $Y_{j}$$Y_{j-1}$,j>1. The indices at which the upper record values occur are given by the record times ${u( n)}n,\geq1$, where u(n) = min{j|j >u(n-l), $X_{j}$$X_{u(n-1)}$,n\qeq2$ and u(l) = 1. Suppose $X{\epsilon}PAR(\frac{1}{\beta},\frac{1}{\beta}$ then E$(\frac{{X^\tau}}_{u(m)}}{{X^{s+1}}_{u(n)})\;=\;\frac{1}{s}E$ E$(\frac{{X^\tau}}_{u(m)}{{X^s}_{u(n-1)}})$ - $\frac{(1+\betas)}{s}E(\frac{{X^\tau}_{u(m)}}{{X^s}_{u(n)}}$ and E$(\frac{{X^{\tau+1}}_{u(m)}}{{X^s}_{u(n)}})$ = $\frac{1}{(r+1)\beta}$ [E$(\frac{{X^{\tau+1}}}_u(m)}{{X^s}_{u(n-1)}})$ - E$(\frac{{X^{\tau+1}}_u(m)}}{{X^s}_{u(n-1)}})$ - (r+1)E$(\frac{{X^\tau}_{u(m)}}{{X^s}_{u(n)}})$]

  • PDF

STABILITY OF FUNCTIONAL EQUATIONS WITH RESPECT TO BOUNDED DISTRIBUTIONS

  • Chung, Jae-Young
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.3
    • /
    • pp.361-370
    • /
    • 2008
  • We consider the Hyers-Ulam type stability of the Cauchy, Jensen, Pexider, Pexider-Jensen differences: $$(0.1){\hspace{55}}C(u):=u{\circ}A-u{\circ}P_1-u{\circ}P_2,\\(0.2){\hspace{55}}J(u):=2u{\circ}\frac{A}{2}-u{\circ}P_1-u{\circ}P_2,\\(0.3){\hspace{18}}P(u,v,w):=u{\circ}A-v{\circ}P_1-w{\circ}P_2,\\(0.4)\;JP(u,v,w):=2u{\circ}\frac{A}{2}-v{\circ}P_1-w{\circ}P_2$$, with respect to bounded distributions.

  • PDF

RECURRENCE RELATION FOR QUOTIENTS OF THE POWER DISTRIBUTION BY RECORD VALUES

  • Lee, Min-Young;Chang, Se-Kyung
    • Korean Journal of Mathematics
    • /
    • v.12 no.1
    • /
    • pp.15-22
    • /
    • 2004
  • In this paper we establish some recurrence relations satisfied by quotient moments of upper record values from the power distribution. Let {$X_n$, $n{\geq}1$} be a sequence of independent an identically distributed random variables with a common continuous distribution function(cdf) $F(x)$ and probability density function(pdf) $f(x)$. Let $Y_n=max\{X_1,X_2,{\cdots},X_n\}$ for $n{\geq}1$. We say $X_j$ is an upper record value of {$X_n$, $n{\geq}1$}, if $Y_j$ > $Y_{j-1}$, $j$ > 1. The indices at which the upper record values occur are given by the record times {$u(n)$}, $n{\geq}1$, where $u(n)=min\{j{\mid}j>u(n-1),X_j>X_{u(n-1)},n{\geq}2\}$ and $u(1)=1$. Suppose $X{\in}POW(0,1,{\theta})$ then $$E\left(\frac{X^r_{u(m)}}{X^{s+1}_{u(n)}}\right)=\frac{\theta}{s}E\left(\frac{X^r_{u(m)}}{X^s_{u(n-1)}}\right)+\frac{(s-\theta)}{s}E\left(\frac{X^r_{u(m)}}{X^s_{u(n)}\right)\;and\;E\left(\frac{X^{r+1}_{u(m)}}{X^s_{u(n)}}\right)=\frac{\theta}{n+1}\left[E\left(\frac{X^{r+1}_{u(m-1)}}{X^s_{u(n+1)}}\right)-E\left(\frac{X^{r+1}_{u(m)}}{X^s_{u(n-1)}}\right)+\frac{r+1}{\theta}E\left(\frac{X^r_{u(m)}}{X^s_{u(n)}}\right)\right]$$.

  • PDF

Three-dimensional evaluation of maxillary anterior alveolar bone for optimal placement of miniscrew implants

  • Choi, Jin Hwan;Yu, Hyung Seog;Lee, Kee Joon;Park, Young Chel
    • The korean journal of orthodontics
    • /
    • v.44 no.2
    • /
    • pp.54-61
    • /
    • 2014
  • Objective: This study aimed to propose clinical guidelines for placing miniscrew implants using the results obtained from 3-dimensional analysis of maxillary anterior interdental alveolar bone by cone-beam computed tomography (CBCT). Methods: By using CBCT data from 52 adult patients (17 men and 35 women; mean age, 27.9 years), alveolar bone were measured in 3 regions: between the maxillary central incisors (U1-U1), between the maxillary central incisor and maxillary lateral incisor (U1-U2), and between the maxillary lateral incisor and the canine (U2-U3). Cortical bone thickness, labio-palatal thickness, and interdental root distance were measured at 4 mm, 6 mm, and 8 mm apical to the interdental cementoenamel junction (ICEJ). Results: The cortical bone thickness significantly increased from the U1-U1 region to the U2-U3 region (p < 0.05). The labio-palatal thickness was significantly less in the U1-U1 region (p < 0.05), and the interdental root distance was significantly less in the U1-U2 region (p < 0.05). Conclusions: The results of this study suggest that the interdental root regions U2-U3 and U1-U1 are the best sites for placing miniscrew implants into maxillary anterior alveolar bone.

CHARACTERIZATIONS OF THE WEIBULL DISTRIBUTION BY THE INDEPENDENCE OF THE UPPER RECORD VALUES

  • Chang, Se-Kyung;Lee, Min-Young
    • The Pure and Applied Mathematics
    • /
    • v.15 no.2
    • /
    • pp.163-167
    • /
    • 2008
  • This paper presents characterizations of the Weibull distribution by the independence of record values. We prove that $X\;{\in}\;W\;EI ({\alpha})$, if and only if $\frac {X_{U(n+l)}} {X_{U(n+1)}\;+\;X_{U(n)}}$ and $X_{U(n+1)}$ for $n{\geq}1$ are independent or $\frac {X_{U(n)}} {X_{U(n+1)}\;+\;X_{U(n)}}$ and $X_{U(n+1)}$ for $n{\geq}1$ are independent. And also we establish that $X\;{\in}\;W\;EI({\alpha})$, if and only if $\frac {X_{U(n+1)}\;-\;X_{U(n)}} {X_{U(n+1)}\;+\;X_{U(n)}}$ and $X_{U(n+1)}$ for $n{\geq}1$ are independent.

  • PDF

EXISTENCE AND ITERATION OF POSITIVE SOLUTION FOR A THREE-POINT BOUNDARY VALUE PROBLEM WITH A p-LAPLACIAN OPERATOR

  • Ma, De-Xiang
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.329-337
    • /
    • 2007
  • In the paper, we obtain the existence of positive solutions and establish a corresponding iterative scheme for BVPs $$\{^{\;(\phi_p(u'))'\;+\;q(t)f(t,u)=0,\;0\;<\;t\;<\;1,}_{\;u(0)\;-\;B(u'({\eta}))\;=\;0,\;u'(1)\;=\;0}$$ and $$\{^{\;(\phi_p(u'))'\;+\;q(t)f(t,u)=0,\;0\;<\;t\;<\;1,}_{\;u'(0)\;=\;0,\;u(1)+B(u'(\eta))\;=\;0.}$$. The main tool is the monotone iterative technique. Here, the coefficient q(t) may be singular at t = 0, 1.