• Title/Summary/Keyword: $l^{p,\infty}$

Search Result 146, Processing Time 0.023 seconds

WEIGHTED VECTOR-VALUED BOUNDS FOR A CLASS OF MULTILINEAR SINGULAR INTEGRAL OPERATORS AND APPLICATIONS

  • Chen, Jiecheng;Hu, Guoen
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.671-694
    • /
    • 2018
  • In this paper, we investigate the weighted vector-valued bounds for a class of multilinear singular integral operators, and its commutators, from $L^{p_1}(l^{q_1};\;{\mathbb{R}}^n,\;w_1){\times}{\cdots}{\times}L^{p_m}(l^{q_m};\;{\mathbb{R}}^n,\;w_m)$ to $L^p(l^q;\;{\mathbb{R}}^n,\;{\nu}_{\vec{w}})$, with $p_1,{\cdots},p_m$, $q_1,{\cdots},q_m{\in}(1,\;{\infty})$, $1/p=1/p_1+{\cdots}+1/p_m$, $1/q=1/q_1+{\cdots}+1/q_m$ and ${\vec{w}}=(w_1,{\cdots},w_m)$ a multiple $A_{\vec{P}}$ weights. Our argument also leads to the weighted weak type endpoint estimates for the commutators. As applications, we obtain some new weighted estimates for the $Calder{\acute{o}}n$ commutator.

ON MIXED PRESSURE-VELOCITY REGULARITY CRITERIA FOR THE 3D MICROPOLAR EQUATIONS IN LORENTZ SPACES

  • Kim, Jae-Myoung;Kim, Jaewoo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.85-92
    • /
    • 2021
  • In present paper, inspired by the recently paper [1], we give the mixed pressure-velocity regular criteria in view of Lorentz spaces for weak solutions to 3D micropolar equations in a half space. Precisely, if (0.1) ${\frac{P}{(e^{-{\mid}x{\mid}^2}+{\mid}u{\mid})^{\theta}}{\in}L^p(0,T;L^{q,{\infty}}({\mathbb{R}}^3_+))$, p, q < ∞, and (0.2) ${\frac{2}{p}}+{\frac{3}{q}}=2-{\theta}$, 0 ≤ θ ≤ 1, then (u, w) is regular on (0, T].

GLOBAL EXISTENCE FOR 3D NAVIER-STOKES EQUATIONS IN A THIN PERIODIC DOMAIN

  • Kwak, Min-Kyu;Kim, Nam-Kwon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.15 no.2
    • /
    • pp.143-150
    • /
    • 2011
  • We consider the global existence of strong solutions of the 3D incompressible Navier-Stokes equations in a thin periodic domain. We present a simple proof that a strong solution exists globally in time when the initial velocity in $H^1$ and the forcing function in $L^p$(0,${\infty}$;$L^2$), $2{\leq}p{\leq}{\infty}$ satisfy certain condition. This condition is basically similar to that by Iftimie and Raugel[7], which covers larger and larger initial data and forcing functions as the thickness of the domain ${\epsilon}$ tends to zero.

MULTIPLE Lp FOURIER-FEYNMAN TRANSFORM ON THE FRESNEL CLASS

  • Ahn, J.M.
    • Korean Journal of Mathematics
    • /
    • v.9 no.2
    • /
    • pp.133-147
    • /
    • 2001
  • In this paper, we introduce the concepts of multiple $L_p$ analytic Fourier-Feynman transform ($1{\leq}p$ < ${\infty})$ and a convolution product of functionals on abstract Wiener space and verify the existence of the multiple $L_p$ analytic Fourier-Feynman transform for functionls in the Fresnel class. Moreover, we verify that the Fresnel class is closed under the $L_p$ analytic Fourier-Feynman transformation and the convolution product, respectively. And we establish some relationships among the multiple $L_p$ analytic Fourier-Feynman transform and the convolution product on the Fresnel class.

  • PDF

ASYMPTOTIC BEHAVIOR OF POSITIVE SOLUTIONS TO SEMILINEAR ELLIPTIC EQUATIONS IN ℝn

  • Lai, Baishun;Luo, Qing;Zhou, Shuqing
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.431-447
    • /
    • 2011
  • We investigate the asymptotic behavior of positive solutions to the elliptic equation (0.1) ${\Delta}u+|x|^{l_1}u^p+|x|^{l_2}u^q=0$ in $\mathbb{R}^n$. We obtain a conclusion that, for n $\geq$ 3, -2 < $l_2$ < $l_1$ $\leq$ 0 and q > p > 1, any positive radial solution to (0.1) has the following properties: $lim_{r{\rightarrow}{\infty}}r^{\frac{2+l_1}{p-1}}\;u$ and $lim_{r{\rightarrow}0}r^{\frac{2+l_2}{q-1}}\;u$ always exist if $\frac{n+1_1}{n-2}$ < p < q, $p\;{\neq}\;\frac{n+2+2l_1}{n-2}$, $q\;{\neq}\;\frac{n+2+2l_2}{n-2}$. In addition, we prove that the singular positive solution of (0.1) is unique under some conditions.

ON THE PROPERTIES OF LOCAL HOMOLOGY GROUPS OF SHEAVES

  • PARK, WON-SUN
    • Honam Mathematical Journal
    • /
    • v.2 no.1
    • /
    • pp.13-18
    • /
    • 1980
  • 모든 기호(記號)는 G.E Bredon의 저(著) Sheaf Theory의 기호(記號)를 따른다. A가 torsion free이며 elementary sheaf이라 하자. 그리고 L을 injective L-module이라 하자 $dim_{\varphi}X<{\infty}$이라면 support의 $family{\varphi}$와 locally subset z에 대하여 ${\Gamma}_{z}(^{\sim}Hom({\Gamma}_{\varphi}(L),L){\otimes}A){\simeq}H_0{^{z}}(X:A)\;H_{-p}{^{z}}(X:A)=0,\;p=1,2,3,$⋯⋯ 이며 support의 family c와 compact subset z에 대하여도 ${\Gamma}_{z}(^{\sim}Hom({\Gamma}_{c}(L),L){\otimes}A){\simeq}H_0{^{z}}(X:A)\;H_{-y}{^{z}}(X:A)=0,\;p=1,2,3,$⋯⋯ A가 elementary이면 locally closed z와 z에서 closed인 $z^{\prime}$ 그리고 $z^{\prime\prime}=z-z^{\prime}$에 대하여 exact sequence ⋯⋯${\rightarrow}H^{z^{\prime}}_{p}\;(X:A){\rightarrow}H^{z}_{p}(X:A){\rightarrow}H^{z^{\prime\prime}}_{p}\;(X:A){\rightarrow}$⋯⋯ 가 존재(存在)한다.

  • PDF

NOTES ON ${\alpha}$-BLOCH SPACE AND $D_p({\mu})$

  • Yang, Gye Tak;Choi, Ki Seong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.3
    • /
    • pp.543-552
    • /
    • 2012
  • In this paper, we will show that if ${\mu}$ is a Borel measure on the unit disk D such that ${\int}_{D}\frac{d{\mu}(z)}{(1-\left|z\right|^2)^{p\alpha}}$ < ${\infty}$ where 0 < ${\alpha},{\rho}$ < ${\infty}$, then a bounded sequence of functions {$f_n$} in the $\alpha$-Bloch space $\mathcal{B}{\alpha}$ has a convergent subsequence in the space $D_p({\mu})$ of analytic functions f on D satisfying $f^{\prime}\;{\in}\;L^p(D,{\mu})$. Also, we will find some conditions such that ${\int}_D\frac{d\mu(z)}{(1-\left|z\right|^2)^p$.

SOME THEOREMS ON GENERALISED MEIJER TRANSFORM

  • Bora, S.L.
    • Kyungpook Mathematical Journal
    • /
    • v.12 no.1
    • /
    • pp.55-60
    • /
    • 1972
  • In this paper two theorems on generalised Meijer transform due to Banerjee [1, p. 433] defined by $${\varphi}_1(p)=\int\limits_{0}^{\infty}(2px)^{m-{\frac{1}{2}}_e-{\frac{1}{2}}pxn}{\varphi}({{\alpha},c;\;2px)f(x)dx$$, have been proved. Some interesting integrals involving hyper-geometric functions are evaluated by the application of theorems.

  • PDF

A reducible case of double hypergeometric series involving the riemann $zeta$-function

  • Park, Junesang;H. M. Srivastava
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.107-110
    • /
    • 1996
  • Usng the Pochhammer symbol $(\lambda)_n$ given by $$ (1.1) (\lambda)_n = {1, if n = 0 {\lambda(\lambda + 1) \cdots (\lambda + n - 1), if n \in N = {1, 2, 3, \ldots}, $$ we define a general double hypergeometric series by [3, pp.27] $$ (1.2) F_{q:s;\upsilon}^{p:r;u} [\alpha_1, \ldots, \alpha_p : \gamma_1, \ldots, \gamma_r; \lambda_1, \ldots, \lambda_u;_{x,y}][\beta_1, \ldots, \beta_q : \delta_1, \ldots, \delta_s; \mu_1, \ldots, \mu_v; ] = \sum_{l,m = 0}^{\infty} \frac {\prod_{j=1}^{q} (\beta_j)_{l+m} \prod_{j=1}^{s} (\delta_j)_l \prod_{j=1}^{v} (\mu_j)_m)}{\prod_{j=1}^{p} (\alpha_j)_{l+m} \prod_{j=1}^{r} (\gamma_j)_l \prod_{j=1}^{u} (\lambda_j)_m} \frac{l!}{x^l} \frac{m!}{y^m} $$ provided that the double series converges.

  • PDF