• Title/Summary/Keyword: $ZnSnO_3$

Search Result 213, Processing Time 0.027 seconds

Dependence of the Structural and Electrical Properties of Co-Sputtered Zn-Doped ITO Thin Films on the Composition and Oxygen Partial Pressure

  • Heo, Gi-Seok;Kim, EunMi
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.4
    • /
    • pp.288-293
    • /
    • 2013
  • Zn-In-Sn-O films were prepared at room temperature by combinatorial RF-magnetron co-sputtering system. The cationic contents of the films were varied using a compositionally combinatorial technique. The effects of the oxygen partial pressure and film compositionon the structural and electrical properties were investigated. The Zn-In-Sn-O films deposited at Ar gas atmosphere showed an amorphous phaseirrespective of the film composition. However, the amorphous Zn-In-Sn-O films with a Zn content below 30.0 at% were converted into a bixbyite type-ITO polycrystalline phase with an increase in the oxygen partial pressure. The resistivity, carrier concentration, and Hall mobility were strongly affected by the oxygen partial pressure and chemical composition of the film. At sufficiently high carrier densities above $5{\times}10^{18}cm^{-3}$, the conduction behavior of amorphous Zn-In-Sn-O film changes from thermally activated to degenerate band conduction accompanied with high mobility.

Growth of ZnSnO3 Thin Films on c-Al2O3 (0001) Substrate by Pulsed Laser Deposition

  • Manh, Trung Tran;Lim, Jae-Ryong;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.5
    • /
    • pp.297-302
    • /
    • 2014
  • $La_{0.5}Sr_{0.5}CoO_3$ (LSCO) electrode thin films with a resistivity of ~ 1,600 ${\mu}{\Omega}cm$ were grown on c-$Al_2O_3$ (0001) substrate. $ZnSnO_3$ (ZTO) thin films with different thicknesses were directly grown on LSCO/c-$Al_2O_3$ (0001) substrates at a substrate temperature that ranged from 550 to $750^{\circ}C$ using Pulsed Laser Deposition (PLD). The secondary phase $Zn_2SnO_4$ occurred during the growth of ZTO films and it became more significant with further increasing substrate temperature. Polarization-electric-field (P-E) hysteresis characteristics, with a remnant polarization and coercive field of 0.05 ${\mu}C/cm^2$ and 48 kV/cm, respectively, were obtained in the ZTO film grown at $700^{\circ}C$ in 200 mTorr.

Anomalous Behavior of Oxygen Gas Ratio-dependent Field Effect Mobility in In-Zn-Sn-O Thin Film Transistor

  • Hwang, A-Yeong;Won, Ju-Yeon;Je, So-Yeon;Ji, Hyeok;Jeong, Jae-Gyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.233-233
    • /
    • 2014
  • InGaZnO 박막트랜지스터(TFT)는 기존의 널리 사용되던 비정질 실리콘보다 높은 전하이동도와 Ion/off, 우수한 균일성과 신뢰성의 장점으로 최근 AMOLED양산에 적용되기 시작 하였다. 그러나 60인치 이상의 대면적 디스플레이와 초고해상도의 성능을 동시에 만족하기 위해 10 cm2/Vs정도의 전하이동도를 가지는 InGaZnO로는 한계가 있어 30 cm2/Vs 이상의 전하이동도를 가지는 물질의 연구가 필요하다. 연구에서는 높은 전하이동도를 만족하기 위해 InO2를, 우수한 신뢰성을 가지는 SnO2를 포함하는 InZnSnO로 실험을 진행하였다. 스퍼터링 시스템에서 ITO 타겟과 ZTO 타겟을 사용하여 동시증착법으로 채널을 증착하였고, 산소 분압 변화시에 IZTO TFT 소자 특성의 의존성을 평가하였다. Ar : O2=10 : 0 일 때와 Ar : O2=7 : 3 일 때의 이동도가 각각 12.6cm2/Vs, 19.7cm2/Vs로 산소 비율이 증가함에 따라 전하이동도가 증가하였다. 기존 IGZO 산화물 반도체에서는 산소 비율이 증가하면 산소공공(VO) 농도감소로 인해 전하이동도가 감소한다. 이는 전하농도가 증가하면 전하이동도가 증가하는 percolation 전도기구로 이해할 수 있다. 그러나 본 IZTO 물질에서는 산소비율 증가에 따라 오히려 전하이동도가 증가하였는데, 이는 IZTO 반도체에 함유된 Sn 이온의 가전자상태가 +2/+4가의 상대적 비율이 산소농도에 따라 의존하기 때문인 것으로 분석되었다.

  • PDF

Structural Properties of MO-SiO$_2$(M=Zn, Sn, In, Ag, Ni) by Sol-Gel Method (졸겔법으로 제조된 MO-$SiO_2$(M=Zn,Sn,In,Ag,Ni)의 구조특성)

  • Sin, Yong-Uk;Kim, Sang-U
    • Korean Journal of Materials Research
    • /
    • v.11 no.7
    • /
    • pp.603-608
    • /
    • 2001
  • $MO-SiO_2$ (M = Zn, Sn, In, Ag, Ni) binary silica gels were synthesized by sol-gel method and their structural change with the kind of metal ions was characterized by XRD, FT- IR and $^{29}$Si-NMR. Although X-ray analysis showed partial recrystallization of $AgNO_3$ in $Ag-SiO_2$gel, crystalline phase formed by the bonding between metal ion and the silica matrix didn't appear in all $MO-SiO_2$ gels. The FT-IR analysis showed that Zn, Sn and in partially formed Si-O-M bonding in silica matrix and made an shift of absorption peak to by Si-O-Si symmetrical vibration. In addition, $^{29}Si-NMR$ studies showed that Zn, Sn and In didn't affect sol-gel process of silica and were linked with non-bridging oxygen of the linear silica structure, which formed imperfect network because of low temperature sol-gel process. Ag and Ni make a role of catalysis on sol-gel process, resulting in densifying the silica network structure.

  • PDF

The Effect of Adding Process of $Zn(NO_3)_2$ on the Properties of $(Zr_{0.8}Sn_{0.2})TiO_4$ Dielectrics Prepared by Coprecipitation of $(Zr^{4+}, Ti^{4+})$-Hydroxides in the Presence of $SnO_2$ Particles ($Zn(NO_3)_2$의 첨가공정이 부분 공침법으로 제조된 $(Zr_{0.8}Sn_{0.2})TiO_4$ 유전체의 특성에 미치는 영향)

  • 임경란;장진욱;홍국선;박순자
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.6
    • /
    • pp.719-725
    • /
    • 1995
  • ZST powders were synthesized by coprecipitation of (Zr4+, Ti4+)-hydroxide in the presence of SnO2 particles. Zn(NO3)2 was used as a sintering additive, and according to the adding sequence, sintering and dielectric properties were investigated. Sintered densities of ZST prepared by adding Zn(NO3)2 before calcination were a little higher than those added after calcination, and dielectric properties of the specimen added by Zn(NO3)2 after calcination were better (sintered at 125$0^{\circ}C$/2 h ; Q$\times$f(GHz)=49, 000, $\varepsilon$r=41) than before calcination (Q$\times$f(GHz)=42, 000, $\varepsilon$r=39.5). Through the observation of TEM, it was identified that the cause was due to the difference of the degree of Zn2+ diffusion into grains. With increasing sintering time from 2 to 8 hrs, grain size was doubled and dielectric properties were somewhat deteriorated.

  • PDF

The Influence of Ag Thickness on the Electrical and Optical Properties of ZnO/Ag/SnO2 Tri-layer Films

  • Park, Yun-Je;Choi, Jin-Young;Choe, Su-Hyeon;Kim, Yu-Sung;Cha, Byung-Chul;Kim, Daeil
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.3
    • /
    • pp.145-149
    • /
    • 2019
  • Transparent and conductive ZnO/Ag/SnO2 (ZAS) tri-layer films were deposited onto glass substrates at room temperature by using radio frequency (RF) and direct current (DC) magnetron sputtering. The thickness values of the ZnO and $SnO_2$ thin films were kept constant at 50 nm and the value for Ag interlayer was varied as 5, 10, 15, and 20 nm. In the XRD pattern the diffraction peaks were identified as the (002) and (103) planes of ZnO, while the (111), (200), (220), and (311) planes could be attributed to the Ag interlayer. The optical transmittance and electrical resistivity were dependent on the thickness of the Ag interlayer. The ZAS films with a 10 nm thick Ag interlayer exhibited a higher figure of merit than the other ZAS films prepared in this study. From the observed results, a ZAS film with a 10 nm thick Ag interlayer was believed to be an alternative transparent electrode candidate for various opto-electrical devices.

$NO_{2}$ Sensing Properties of Oxide Semiconductor Thick Films (산화물 반도체형 후막 가스 센서의 이산화질소 감지 특성)

  • Kim, Seung-Ryeol;Yun, Dong Hyun;Hong, Hyung-Ki;Kwon, Chul-Han;Lee, Kyu-Chung
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.451-457
    • /
    • 1997
  • The thick films of oxide semiconductors such as $WO_{3}$, $SnO_{2}$ and ZnO for the $NO_{2}$ detection of sub-ppm range have been prepared and their characteristics were investigated. It is showed that the optimum operating temperatures of the sensors are $300^{\circ}C$ and $220{\sim}260^{\circ}C$ for $WO_{3}$-based and $SnO_{2}$-based thick films, and ZnO-based thick films, respectively. Since the resistance of ZnO-based thick films are extremely high($>10^{6}{\Omega}$), the signal to noise ratio was comparatively low. In order to determine the selectivity, the films are exposed to the interfering gases such as ozone, ammonia, methane and the mixture of carbon monoxide and propane. $WO_{3}$-ZnO(3 wt.%) and $SnO_{2}-WO_{3}$(3 wt.%) thick film sensors show high sensitivity, good selectivity, excellent reproducibility and the linearity of $NO_{2}$ concentration versus sensor resistance. The preliminary results clearly demonstrated that the sensor can be successfully applied for the detection of $NO_{2}$ in sub-ppm range.

  • PDF

Fabrication of SnO2/Zn Core-shell Nanowires and Photoluminescence Properties

  • Kong, Myung Ho;Kwon, Yong Jung;Cho, Hong Yeon;Kim, Hyoun Woo
    • Applied Science and Convergence Technology
    • /
    • v.23 no.5
    • /
    • pp.301-307
    • /
    • 2014
  • We have fabricated $SnO_2$/Zn core-shell nanowires by employing a sputtering technique with a Zn target. Scanning electron microscopy indicated that the surface of the nanowires became rougher by the coating. X-ray diffraction of the coated nanowires exhibited the hexagonal Zn diffraction peaks. TEM image of coated structures showed that shell layer was mainly comprised of hexagonal Zn phase. EDX spectra suggested that the shell layer consisted of Zn elements. The photoluminescence spectrum of the coated nanowires in conjunction with Gaussian fitting analysis revealed that the emission was disconvoluted with three Gaussian functions, which are centered at 2.1 eV in the yellow region, 2.4 eV in the green region, and 3.3 eV in the ultraviolet region. We speculated the possible mechanisms of these emission peaks.

Effect of the Deposition Temperature on the Transmittance & Electrical Conductivity of In1.6Zn0.2Sn0.2O3-δ Thin Films Prepared by RF-magnetron Sputtering (RF-마그네트론 스퍼터링에 의해 제조된 In1.6Zn0.2Sn0.2O3-δ 박막의 투과율 및 전기 전도성에 미치는 증착 온도의 영향)

  • Seo, Han;Ji, Mi-Jung;An, Yong-Tea;Ju, Byeong-Kwon;Choi, Byung-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.663-668
    • /
    • 2012
  • In order to reduce the indium contents in transparent conducting oxide(TCO) thin films of $In_{1.6{\sim}1.8}Zn_{0.2}Sn_{0.2{\sim}0.4}O_3$ (IZTO), $In_{1.6}Zn_{0.2}Sn_{0.2}O_{3-{\delta}}$(IZTO) was prepared by replacing indium with Zn and Sn. The TCO films were deposited via RF-magnetron sputtering of the IZTO target at various deposition temperatures and its film characteristics were investigated. When deposited in an Ar atmosphere at $400^{\circ}C$, the electrical resistivity of the film decreased to $6.34{\times}10^{-4}{\Omega}{\cdot}cm$ and the optical transmittance was 80%. As the deposition temperature increased, the crystallinity of the IZTO film was enhanced. As a result, the electrical conductivity and transmittance properties were improved. This demonstrates the possibility of replacing ITO TCO film with IZTO.

Fabrication and Properties of ZnSnO3 Piezoelectric Films Deposited by a Pulsed Laser Deposition (Pulsed Laser Deposition 방법으로 증착된 ZnSnO3 압전 박막의 성장과 특성 평가)

  • Park, Byeong-Ju;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.1
    • /
    • pp.18-21
    • /
    • 2014
  • Because the Pb-based piezoelectric materials showed problems such as an environmental pollution. lead-free $O_3$ materials were studied in the present study. The $O_3$ thin films were deposited at $640^{\circ}C$ on $Pt/Ti/SiO_2$ substrate by pulsed laser deposition (PLD) and were annealed for 5 min at $750^{\circ}C$ using rapid thermal annealing (RTA) in nitrogen atmosphere. Samples annealed at $750^{\circ}C$ showed a smooth morphology and an improvement of the dielectric and leakage properties, as compared with as-grown samples. However, electrical properties of the $O_3$ thin films obtained in the present study should be improved for piezoelectric applications.