Browse > Article
http://dx.doi.org/10.4313/JKEM.2014.27.5.297

Growth of ZnSnO3 Thin Films on c-Al2O3 (0001) Substrate by Pulsed Laser Deposition  

Manh, Trung Tran (Department of Materials Science and Engineering, Chungnam National University)
Lim, Jae-Ryong (Department of Materials Science and Engineering, Chungnam National University)
Yoon, Soon-Gil (Department of Materials Science and Engineering, Chungnam National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.27, no.5, 2014 , pp. 297-302 More about this Journal
Abstract
$La_{0.5}Sr_{0.5}CoO_3$ (LSCO) electrode thin films with a resistivity of ~ 1,600 ${\mu}{\Omega}cm$ were grown on c-$Al_2O_3$ (0001) substrate. $ZnSnO_3$ (ZTO) thin films with different thicknesses were directly grown on LSCO/c-$Al_2O_3$ (0001) substrates at a substrate temperature that ranged from 550 to $750^{\circ}C$ using Pulsed Laser Deposition (PLD). The secondary phase $Zn_2SnO_4$ occurred during the growth of ZTO films and it became more significant with further increasing substrate temperature. Polarization-electric-field (P-E) hysteresis characteristics, with a remnant polarization and coercive field of 0.05 ${\mu}C/cm^2$ and 48 kV/cm, respectively, were obtained in the ZTO film grown at $700^{\circ}C$ in 200 mTorr.
Keywords
Piezoelectric; $ZnSnO_3$ thin film; Ferroelectric thin films;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Kang, K. Yao, and J. Wang, Journal of the American Ceramic Society, 95, 986 (2012).
2 J. Jiang, H. J. Jung, and S. G. Yoon, J. Alloy. Compd., 509, 6924 (2011).   DOI   ScienceOn
3 A. I. Kingon and S. Srinivasan, Nat. Mater., 4, 233 (2005).   DOI   ScienceOn
4 H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, Appl. Phys. Lett., 86, 013503 (2004).
5 R. J. Zeches, M. D. Rossell, J. X. Zhang, A. J. Hatt, Q. He, C. H. Yang, A. Kumar, C. H. Wang, A. Melville, C. Adamo, G. Sheng, Y. H. Chu, J. F. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, L. Q. Chen, D. G. Schlom, N. A. Spaldin, L. W. Martin, and R. Ramesh, Science, 326, 977 (2009).   DOI   ScienceOn
6 J. M. Wu, C. Xu, Y. Zhang, and Z. L. Wang, ACS Nano, 6, 4335 (2012).   DOI   ScienceOn
7 I. G. Pathan, D. N. Suryawanshi, A. R. Bari, D. S. Rane, and L. A. Patil, Advanced Nanomaterials and Nanotechnology, 143, 143 (2013).   DOI
8 P. S. Halasyamani and K. R. Poeppelmeier, Chem. Mater., 10, 2753 (1998).   DOI   ScienceOn
9 Y. Inaguma, M. Yoshida, and T. Katsumata, J. Am. Chem. Soc., 130, 6704 (2008).   DOI   ScienceOn
10 Z. L. Wang and J. H. Song, Science, 32, 242 (2006).
11 Y. Wakasaa, I. Kannoa, R. Yokokawaa, H. Koteraa, K. Shibatab, and T. Mishima, Sensor. Actuat., Phys. A, 171, 223 (2011).   DOI   ScienceOn
12 I. Kanno, T. Mino, S. Kuwajima, T. Suzuki, H. Kotera, and K. Wasa, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 54, 2562 (2007).   DOI   ScienceOn
13 J. Jiang and S. G. Yoon, J. Alloy. Compd., 509, 3065 (2011).   DOI   ScienceOn
14 K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L. Q. Chen, D. G. Schlom, and C. B. Eom, Science, 306, 1005 (2004).   DOI   ScienceOn
15 J. Y. Son, G. Lee, M. H. Jo, H. Kim, H. M. Jang, and Y. H. Shin, J. Am. Chem. Soc., 131, 8386 (2009).   DOI   ScienceOn
16 J. H. Jung, M. Lee, J. I. Hong, Y. Ding, C. Y. Chen, L. J. Chou, and Z. L. Wang, ACS Nano, 5, 10041 (2011).   DOI   ScienceOn