DOI QR코드

DOI QR Code

Fabrication of SnO2/Zn Core-shell Nanowires and Photoluminescence Properties

  • Kong, Myung Ho (Industrial Technology Support Devision, Korea Institute of Materials Science) ;
  • Kwon, Yong Jung (Division of Materials Science and Engineering, Hanyang University) ;
  • Cho, Hong Yeon (Division of Materials Science and Engineering, Hanyang University) ;
  • Kim, Hyoun Woo (Division of Materials Science and Engineering, Hanyang University)
  • Received : 2014.09.24
  • Accepted : 2014.09.30
  • Published : 2014.09.30

Abstract

We have fabricated $SnO_2$/Zn core-shell nanowires by employing a sputtering technique with a Zn target. Scanning electron microscopy indicated that the surface of the nanowires became rougher by the coating. X-ray diffraction of the coated nanowires exhibited the hexagonal Zn diffraction peaks. TEM image of coated structures showed that shell layer was mainly comprised of hexagonal Zn phase. EDX spectra suggested that the shell layer consisted of Zn elements. The photoluminescence spectrum of the coated nanowires in conjunction with Gaussian fitting analysis revealed that the emission was disconvoluted with three Gaussian functions, which are centered at 2.1 eV in the yellow region, 2.4 eV in the green region, and 3.3 eV in the ultraviolet region. We speculated the possible mechanisms of these emission peaks.

Keywords

References

  1. A. P. Alivisatos, Science 271, 933 (1996). https://doi.org/10.1126/science.271.5251.933
  2. X. Duan, Y. Huang, Y. Cui, J. Wang and C. M. Lieber, Nature. 409, 66 (2001). https://doi.org/10.1038/35051047
  3. W. A. de Heer, A. Chatelain, and D. Ugarte, Science. 270, 1179 (1995). https://doi.org/10.1126/science.270.5239.1179
  4. A. M. Morales and C. M. Lieber, Science. 279, 208 (1998). https://doi.org/10.1126/science.279.5348.208
  5. Y. Yu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, Nature. 450, 61 (2004).
  6. L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, Nature. 420, 57 (2002). https://doi.org/10.1038/nature01141
  7. H.-J. Choi, J. C. Johnson, R. He, S.-K. Lee, F. Kim, P. Pauzauskie, J. Golberger, R. J. Saykally, and P. Yang, J. Phys. Chem. B 107, 8721 (2003). https://doi.org/10.1021/jp034734k
  8. X. Wang, N. Aroonyadet, Y. Zhang, M. Mecklenburg, X. Fang, H. Chen, E. Goo, and C. Zhou, Nano Lett. 14, 3014 (2014). https://doi.org/10.1021/nl404289z
  9. P. Camagni, G. Fagila, P. Galinetto, C. Perego, G. Samoggia, and G. Sberveglieri, Sens. Actuators. B 31, 99 (1996). https://doi.org/10.1016/0925-4005(96)80023-2
  10. A. B. Bhise, D. J. Late, B. Sathe, M. A. More, I. S. Mulla, V. K. Pillai, and D. S. Joag, J. Exp. Nanosci. 5, 527 (2010). https://doi.org/10.1080/17458081003671683
  11. J. Huang, A. X. Lu, B. Zhao, and Q. Wan, Appl. Phys. Lett. 91, 073121 (2007).
  12. Q. Wan, E. N. Dattoli, and W. Lu, Appl. Phys. Lett. 90, 2221071 (2007).
  13. A. Espinosa, M. Garcia-Hernandez, N. Menendez, C. Prieto, and A. De-Andres, Phys. Rev. B 81, 064419 (2010). https://doi.org/10.1103/PhysRevB.81.064419
  14. W. Prellier, A. Fouchet, and B. Mercey, J. Phys.: Condens. Matter. 15, R1583 (2003). https://doi.org/10.1088/0953-8984/15/37/R01
  15. R. Long and N. J. English, Phys. Lett. A 374, 319 (2009) https://doi.org/10.1016/j.physleta.2009.10.036
  16. E. N. Dattoli, Q. Wan, W. Guo, Y. Chen, X. Pan, and W. Lu, Nano Lett. 7, 2463 (2007). https://doi.org/10.1021/nl0712217
  17. N. Amin, T. Isaka, A. Yamada, and M. Konagai, Sol. Energy Mater. Sol. Cells. 67, 195 (2001). https://doi.org/10.1016/S0927-0248(00)00281-6
  18. Z. Ying, Q. Wana, H. Cao, Z. T. Song, and S. L. Feng, Appl. Phys. Lett. 87, 1131081 (2005).
  19. S. Gubbala, V. Chakrapani, V. Kumar, and K. S. Mahendra, Adv. Funct. Mater. 18, 2411 (2008). https://doi.org/10.1002/adfm.200800099
  20. X. Liu, J. Iqbal, Z. Wu, B. He, and R. Yu, J. Phys. Chem. C 114, 4790 (2010). https://doi.org/10.1021/jp909178x
  21. A. Maiti, J. A. Rodriguez, M. Law, P. Kung, J. R. McKinney, and P. D. Yang, Nano Lett. 3, 1025 (2003). https://doi.org/10.1021/nl034235v
  22. M. Law, H. Kind, B. Messer, F. Kim, and P. D. Yang, Angew. Chem., Int. Ed. 41, 2405 (2002). https://doi.org/10.1002/1521-3773(20020703)41:13<2405::AID-ANIE2405>3.0.CO;2-3
  23. C.-L. Cheng, J.-S. Lin, and Y.-F. Chen, Mater. Lett. 62, 1666 (2008). https://doi.org/10.1016/j.matlet.2007.09.065
  24. X. H. Ding, D. W. Zeng, and C. S. Xie, Sens. Actuators. B 149, 336 (2010). https://doi.org/10.1016/j.snb.2010.06.057
  25. X. F. Liu, J. Iqbal, Z. B. Wu, B. He, and R. H. Yu, J. Phys. Chem. C 114, 4790 (2010). https://doi.org/10.1021/jp909178x
  26. I. Saadeddin, H. S. Hilal, B. Pecquenard, J. Marcus, A. Mansouri, C. Labrugere, M. A. Subramanian, and G. Campet, Sol. Stat. Sci. 61, 1060 (2007).
  27. X. Jia, Y. Liu, X. Wu, and Z. Zhang, Appl. Surf. Sci. 311, 609 (2014). https://doi.org/10.1016/j.apsusc.2014.05.118
  28. S. S. Bhande, D. V. Shinde, S. F. Shaikh, S. B. Ambade, R. B. Ambade, R. S. Mane, Inamuddin, M. Naushad, and S. H. Han, RSC Advances. 4, 20527 (2014). https://doi.org/10.1039/c4ra01493f
  29. S. Yanagiya, N. V. Nong, J. Xu, M. Sonne, and N. Pryds, J. Electron. Mater. 40, 674 (2011). https://doi.org/10.1007/s11664-010-1506-8
  30. H. W. Kim and S. H. Shim, J. Korean Phys. Soc. 47, 516 (2005).
  31. H. W. Kim, S. H. Shim, and J. W. Lee, Carbon. 45, 2695 (2007). https://doi.org/10.1016/j.carbon.2007.08.032
  32. T. L. Credelle, C. G. Fonstad, and R. H. Rediker, Bull. Am. Phys. Soc. 16, 519 (1971).
  33. J. Q. Hu, Y. Bando, Q. Liu, and D. Golberg, Adv. Funct. Mater. 13, 493 (2003). https://doi.org/10.1002/adfm.200304327
  34. B. Cheng, J. M. Russell, W. Shi, L. Zhang, and E. T. Samulski, J. Am. Chem. Soc. 126, 5972 (2004). https://doi.org/10.1021/ja0493244
  35. J. Jeong, S.-P. Choi, C. I. Chang, D. C. Shin, J. S. Park, B.-T. Lee, Y.-J. Park, and H.-J. Song, Solid. Stat. Commun. 127, 595 (2003). https://doi.org/10.1016/S0038-1098(03)00614-8
  36. A. K. Mahapatra, U. M. Bhatta, and T. Som, J. Phys. D: Appl. Phys. 45, 415303 (2012). https://doi.org/10.1088/0022-3727/45/41/415303
  37. N. Cabrera and N. F. Mott, Rep. Prog. Phys. 12, 163 (1949). https://doi.org/10.1088/0034-4885/12/1/308
  38. R. Nakamura, J.-G. Lee, D. Tokozakura, H. Mori, and H. Nakajima, Mater. Lett. 61, 1060 (2007). https://doi.org/10.1016/j.matlet.2006.06.039
  39. P. P. Sahay, R. K. Mishra, S. N. Pandey, S. Jha, and M. Shamsuddin, Curr. Appl. Phys. 13, 479 (2013) https://doi.org/10.1016/j.cap.2012.09.010