• Title/Summary/Keyword: $Z_2$

Search Result 7,099, Processing Time 0.028 seconds

STRONG DIFFERENTIAL SUBORDINATION AND APPLICATIONS TO UNIVALENCY CONDITIONS

  • Antonino Jose- A.
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.311-322
    • /
    • 2006
  • For the Briot-Bouquet differential equations of the form given in [1] $${{\mu}(z)+\frac {z{\mu}'(z)}{z\frac {f'(z)}{f(z)}\[\alpha{\mu}(z)+\beta]}=g(z)$$ we can reduce them to $${{\mu}(z)+F(z)\frac {v'(z)}{v(z)}=h(z)$$ where $$v(z)=\alpha{\mu}(z)+\beta,\;h(z)={\alpha}g(z)+\beta\;and\;F(z)=f(z)/f'(z)$$. In this paper we are going to give conditions in order that if u and v satisfy, respectively, the equations (1) $${{\mu}(z)+F(z)\frac {v'(z)}{v(z)}=h(z)$$, $${{\mu}(z)+G(z)\frac {v'(z)}{v(z)}=g(z)$$ with certain conditions on the functions F and G applying the concept of strong subordination $g\;\prec\;\prec\;h$ given in [2] by the author, implies that $v\;\prec\;{\mu},\;where\;\prec$ indicates subordination.

SHARP BOUNDS FOR INITIAL COEFFICIENTS AND THE SECOND HANKEL DETERMINANT

  • Ali, Rosihan M.;Lee, See Keong;Obradovic, Milutin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.839-850
    • /
    • 2020
  • For functions f(z) = z + a2z2 + a3z3 + ⋯ belonging to particular classes, this paper finds sharp bounds for the initial coefficients a2, a3, a4, as well as the sharp estimate for the second order Hankel determinant H2(2) = a2a4 - a23. Two classes are treated: first is the class consisting of f(z) = z + a2z2 + a3z3 + ⋯ in the unit disk 𝔻 satisfying $$\|\(\frac{z}{f(z)}\)^{1+{\alpha}}\;f^{\prime}(z)-1\|<{\lambda},\;0<{\alpha}<1,\;0<{\lambda}{\leq}1.$$ The second class consists of Bazilevič functions f(z) = z+a2z2+a3z3+⋯ in 𝔻 satisfying $$Re\{\(\frac{f(z)}{z}\)^{{\alpha}-1}\;f^{\prime}(z)\}>0,\;{\alpha}>0.$$

A STUDY ON HASH FUNCTIONS

  • Yang, Jeong-Mo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.13 no.2
    • /
    • pp.87-98
    • /
    • 2001
  • In this paper, we study hash function, which will take a message of arbitrary length and produce a massage digest of a specified size. The message digest will then be signed. We have to be careful that the use of a hash function h does not weaken the security of the signature scheme, for it is the message digest that is signed, not the message. It will be necessary for h to satisfy certain properties in order to prevent various forgeries. In order to prevent various type of attack, we require that hash function satisfy collision-free property. In section 1, we introduce some definitions and collision-free properties of hash function. In section 2, we study a discrete log hash function and introduce the main theorem as follows : Theorem Suppose $h:X{\rightarrow}Z$ is a hash function. For any $z{\in}Z$, let $$h^{-1}(z)={\lbrace}x:h(x)=z{\rbrace}$$ and denote $s_z={\mid}h^{-1}(z){\mid}$. Define $$N={\mid}{\lbrace}{\lbrace}x_1,x_2{\rbrace}:h(x_1)=h(x_2){\rbrace}{\mid}$$. Then (1) $\sum\limits_{z{\in}Z}s_z={\mid}x{\mid}$ and the mean of the $s_z$'s is $\bar{s}=\frac{{\mid}X{\mid}}{{\mid}Z{\mid}}$ (2) $N=\sum\limits_{z{\in}Z}{\small{s_z}}C_2=\frac{1}{2}\sum\limits_{z{\in}Z}S_z{^2}-\frac{{\mid}X{\mid}}{2}$. (2) $\sum\limits_{z{\in}Z}(S_z-\bar{s})^2=2N+{\mid}X{\mid}-\frac{{\mid}X{\mid}^2}{{\mid}Z{\mid}}$.

  • PDF

First Order Differential Subordinations and Starlikeness of Analytic Maps in the Unit Disc

  • Singh, Sukhjit;Gupta, Sushma
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.3
    • /
    • pp.395-404
    • /
    • 2005
  • Let α be a complex number with 𝕽α > 0. Let the functions f and g be analytic in the unit disc E = {z : |z| < 1} and normalized by the conditions f(0) = g(0) = 0, f'(0) = g'(0) = 1. In the present article, we study the differential subordinations of the forms $${\alpha}{\frac{z^2f^{{\prime}{\prime}}(z)}{f(z)}}+{\frac{zf^{\prime}(z)}{f(z)}}{\prec}{\alpha}{\frac{z^2g^{{\prime}{\prime}}(z)}{g(z)}}+{\frac{zg^{\prime}(z)}{g(z)}},\;z{\in}E,$$ and $${\frac{z^2f^{{\prime}{\prime}}(z)}{f(z)}}{\prec}{\frac{z^2g^{{\prime}{\prime}}(z)}{g(z)}},\;z{\in}E.$$ As consequences, we obtain a number of sufficient conditions for star likeness of analytic maps in the unit disc. Here, the symbol ' ${\prec}$ ' stands for subordination

  • PDF

ON THE EXISTENCE OF SOLUTIONS OF FERMAT-TYPE DIFFERENTIAL-DIFFERENCE EQUATIONS

  • Chen, Jun-Fan;Lin, Shu-Qing
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.983-1002
    • /
    • 2021
  • We investigate the non-existence of finite order transcendental entire solutions of Fermat-type differential-difference equations [f(z)f'(z)]n + P2(z)fm(z + 𝜂) = Q(z) and [f(z)f'(z)]n + P(z)[∆𝜂f(z)]m = Q(z), where P(z) and Q(z) are non-zero polynomials, m and n are positive integers, and 𝜂 ∈ ℂ \ {0}. In addition, we discuss transcendental entire solutions of finite order of the following Fermat-type differential-difference equation P2(z) [f(k)(z)]2 + [αf(z + 𝜂) - 𝛽f(z)]2 = er(z), where $P(z){\not\equiv}0$ is a polynomial, r(z) is a non-constant polynomial, α ≠ 0 and 𝛽 are constants, k is a positive integer, and 𝜂 ∈ ℂ \ {0}. Our results generalize some previous results.

A UNIFORM LAW OF LARGE MUNBERS FOR PRODUCT RANDOM MEASURES

  • Kil, Byung-Mun;Kwon, Joong-Sung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.221-231
    • /
    • 1995
  • Let $Z_1, Z_2, \ldots, Z_l$ be random set functions or intergrals. Then it is possible to discuss their products. In the case of random integrals, $Z_i$ is a random set function indexed y a family, $G_i$ say, of real valued functions g on $S_i$ for which the integrals $Z_i(g) = \smallint gdZ_i$ are well defined. If $g_i = \in g_i (i = 1, 2, \ldots, l) and g_1 \otimes \cdots \otimes g_l$ denotes the tensor product $g(s) = g_1(s_1)g_2(s_2) \cdots g_l(s_l) for s = (s_1, s_2, \ldots, s_l) and s_i \in S_i$, then we can defined $Z(g) = (Z_1 \times Z_2 \times \cdots \times Z_l)(g) = Z_1(g_1)Z_2(g_2) \cdots Z_l(g_l)$.

  • PDF

QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN NON-ARCHIMEDEAN NORMED SPACES

  • Cui, Yinhua;Hyun, Yuntak;Yun, Sungsik
    • The Pure and Applied Mathematics
    • /
    • v.24 no.2
    • /
    • pp.109-127
    • /
    • 2017
  • In this paper, we solve the following quadratic ${\rho}-functional$ inequalities ${\parallel}f({\frac{x+y+z}{2}})+f({\frac{x-y-z}{2}})+f({\frac{y-x-z}{2}})+f({\frac{z-x-y}{2}})-f(x)-f(y)f(z){\parallel}$ (0.1) ${\leq}{\parallel}{\rho}(f(x+y+z)+f(x-y-z)+f(y-x-z)+f(z-x-y)-4f(x)-4f(y)-4f(z)){\parallel}$, where ${\rho}$ is a fixed non-Archimedean number with ${\mid}{\rho}{\mid}$ < ${\frac{1}{{\mid}4{\mid}}}$, and ${\parallel}f(x+y+z)+f(x-y-z)+f(y-x-z)+f(z-x-y)-4f(x)-4f(y)-4f(z){\parallel}$ (0.2) ${\leq}{\parallel}{\rho}(f({\frac{x+y+z}{2}})+f({\frac{x-y-z}{2}})+f({\frac{y-x-z}{2}})+f({\frac{z-x-y}{2}})-f(x)-f(y)f(z)){\parallel}$, where ${\rho}$ is a fixed non-Archimedean number with ${\mid}{\rho}{\mid}$ < ${\mid}8{\mid}$. Using the direct method, we prove the Hyers-Ulam stability of the quadratic ${\rho}-functional$ inequalities (0.1) and (0.2) in non-Archimedean Banach spaces and prove the Hyers-Ulam stability of quadratic ${\rho}-functional$ equations associated with the quadratic ${\rho}-functional$ inequalities (0.1) and (0.2) in non-Archimedean Banach spaces.

CONJUGATE LOCI OF 2-STEP NILPOTENT LIE GROUPS SATISFYING J2z = <Sz, z>A

  • Jang, Chang-Rim;Lee, Tae-Hoon;Park, Keun
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.6
    • /
    • pp.1705-1723
    • /
    • 2008
  • Let n be a 2-step nilpotent Lie algebra which has an inner product <, > and has an orthogonal decomposition $n\;=z\;{\oplus}v$ for its center z and the orthogonal complement v of z. Then Each element z of z defines a skew symmetric linear map $J_z\;:\;v\;{\longrightarrow}\;v$ given by <$J_zx$, y> = for all x, $y\;{\in}\;v$. In this paper we characterize Jacobi fields and calculate all conjugate points of a simply connected 2-step nilpotent Lie group N with its Lie algebra n satisfying $J^2_z$ = A for all $z\;{\in}\;z$, where S is a positive definite symmetric operator on z and A is a negative definite symmetric operator on v.

EXISTENCE OF TRANSCENDENTAL MEROMORPHIC SOLUTIONS ON SOME TYPES OF NONLINEAR DIFFERENTIAL EQUATIONS

  • Hu, Peichu;Liu, Manli
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.991-1002
    • /
    • 2020
  • We show that when n > m, the following delay differential equation fn(z)f'(z) + p(z)(f(z + c) - f(z))m = r(z)eq(z) of rational coefficients p, r doesn't admit any transcendental entire solutions f(z) of finite order. Furthermore, we study the conditions of α1, α2 that ensure existence of transcendental meromorphic solutions of the equation fn(z) + fn-2(z)f'(z) + Pd(z, f) = p1(z)eα1(z) + p2(z)eα2(z). These results have improved some known theorems obtained most recently by other authors.

A Stereoselective Synthesis of (Z,Z)-3,13-Octadecadien-1-yl Acetate, and Its (E,Z)-Isomer, the Sex Pheromone of the Cherry Tree Borer, Synanthedon hector Butler

  • Kang, Suk-Ku;Park, Sun-Ku
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.3
    • /
    • pp.149-152
    • /
    • 1988
  • A mixture of (Z,Z)-3,13-octadecadien-1-yl acetate(1) and its (E,Z)-isomer(2), the sex pheromone of the cherry tree borer, Synanthedon hector Butler was synthesized. (Z)-11-Octadecen-1-al(3) was prepared from 1,10-decandiol. The Wittig reaction the above aldehyde3 with carboethoxymethylenetriphenylphosphorane, or the Wadsworth-Emmons reaction of the above aldehyde3 with the anion of triethylphosphonoacetate gave ethyl (Z,Z)-2,13-octadecadienoate and its (E,Z)-isomer. Deconjugative protonation of ethyl (Z,Z)-2,13-octadecadienoate and its (E,Z)-isomer with potassium hexamethyldisilazide followed by aqueous ammonium chloride work-up afforded stereoselectiv디y ethyl (E,Z)-3,13-octadecadienoate and its (Z,Z)-isomer, respectively, of which stereoselectivity was adjusted to give the product in the required ratio. Exposure of the above deconjugated ester to excess lithium aluminium hydride resulted in formation of the penultimate (Z,Z)-3,13-octadecadien-1-ol and its (E,Z)-isomer. Acetylation of the desired alcohols afford the final products, (Z,Z)-3,13-octadecadien-1-yl acetate(1) and its (E,Z)-isomer(2).