• 제목/요약/키워드: $UO_{2}$ Pellet

검색결과 117건 처리시간 0.023초

핵 연료 요소내의 접촉 열전도도 측정 (Measurement of The Thermal Contact Conductance in Nuclear Fuel Element)

  • ;윤병조
    • Nuclear Engineering and Technology
    • /
    • 제22권1호
    • /
    • pp.75-81
    • /
    • 1990
  • 핵연료봉내의 온도 분포를 결정하는데 있어서 중요한 핵연료소자와 피복판 사이의 접촉 열전도도를 결정하기 위한 실험을 수행하였다. 이 실험에 사용된 측정장치는 접촉압력을 임의로 변화시켜 줄 수 있는 가압기와 열전대, 진공펌프, 핵연료소자, 봉형태의 피복관, 그리고 두 개의 히터 등으로 구성되어 있다. 접촉 열전도도는 $UO_2$ 소자와 Zircaloy-2 피복관 사이의 접촉 압력과 표면 조도를 변화시키면서 측정하였다. 그 결과 두 물체사이의 접촉압력이 증가함에 따라, 그리고 표면이 매끄러울수록 접촉 열전달계수는 증가하였다. 실험에서 얻은 값을 가지고 상관식을 만들었으며 일반적으로 사용되고 있는 상관식과 비교하였다.

  • PDF

핵연료분말 제조에서 반응물질의 변화가 분말의 특성에 미치는 영향 (Powder Characteristics by Change of Reacting Material in Nuclear Fuel Powder Preparation)

  • 정경채;박진호;황성태
    • 한국세라믹학회지
    • /
    • 제33권6호
    • /
    • pp.631-636
    • /
    • 1996
  • The powder characteristics of UO2 via AUC prepared by precipitation from a UN with AC soiution produced from nuclear fuel powder conversion plant and that of the existing facility were compared. Mean particle size of AUC powder was decreased and agglomerates were much occured in case of using the AC solution that that of the gases but other properties such as particle size distribution and shape of particle are thought to be similarly. In compaction of UO2 powder the breaking pressur of agglomerated UO2 powder and the sintered density of final UO2 pellet from AC solution were measured 1.45$\times$108 N/m2 and 10.52 g/cc, These values could be used in nuclear fuel powder fabrication process.

  • PDF

Focused ion beam-scanning electron microscope examination of high burn-up UO2 in the center of a pellet

  • Noirot, J.;Zacharie-Aubrun, I.;Blay, T.
    • Nuclear Engineering and Technology
    • /
    • 제50권2호
    • /
    • pp.259-267
    • /
    • 2018
  • Focused ion beam-scanning electron microscope and electron backscattered diffraction examinations were conducted in the center of a $73\;GWd/t_U\;UO_2$ fuel. They showed the formation of subdomains within the initial grains. The local crystal orientations in these domains were close to that of the original grain. Most of the fission gas bubbles were located on the boundaries. Their shapes were far from spherical and far from lenticular. No interlinked bubble network was found. These observations shed light on previous unexplained observations. They plead for a revision of the classical description of fission gas release mechanisms for the center of high burn-up $UO_2$. Yet, complementary detailed observations are needed to better understand the mechanisms involved.

RECYCLING PROCESS OF U3O8 POWDER IN MnO-Al2O3 DOPED LARGE GRAIN UO2 PELLETS

  • Oh, Jang Soo;Kim, Dong-Joo;Yang, Jae Ho;Kim, Keon Sik;Rhee, Young Woo;Koo, Yang-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제46권1호
    • /
    • pp.117-124
    • /
    • 2014
  • The effect of various process variables on the powder properties of recycled $U_3O_8$ from MnO-$Al_2O_3$ doped large grain $UO_2$ pellets and the effect of those recycled $U_3O_8$ powders on the sintered density and grain size of MnO-$Al_2O_3$ doped large grain $UO_2$ pellets have been investigated. The evolution of morphology, size, and BET surface area of the recycled $U_3O_8$ powders according to the respective variation of the thermo-mechanical treatment variables of oxidation temperature, powder milling, and sequential cyclic heat treatment of oxidation and then reduction was examined. The correlation between the BET surface area of recycled $U_3O_8$ powder and the sintered pellet properties of MnO-$Al_2O_3$ doped pellets showed that the pellet density and grain size of doped pellets were increased and then saturated by increasing the BET surface area of the recycled $U_3O_8$ powder. The density and grain size of the pellets were maximized when the BET surface area of the recycled $U_3O_8$ powder was in the vicinity of $3m^2/g$. Among the process variables applied in this study, the cyclic heat treatment followed by low temperature oxidation was a potential process combination to obtain the sinter-active $U_3O_8$ powder.

Relation Between Density and Porosity in Sintered $UO_2$ Pellets

  • Sang Ho Na;Si Hyung Kim;Young-Woo Lee;Myung June Yoo
    • Nuclear Engineering and Technology
    • /
    • 제34권5호
    • /
    • pp.433-435
    • /
    • 2002
  • The relation between sintered densities and porosities in UO$_2$ pellets is investigated. The open porosity decreases linearly up to about 95% T.D.,(theoretical density) as the sintered density increases whereas, above 96% T.D., sintered UO$_2$ pellets do not have any open pores. The fraction of open porosity to the total porosity also decreases linearly as the sintered density increases, though the slope is lower than that of open porosity and, above 95% T.D., the fraction decreases rapidly to approach a zero.

사고저항성 핵연료용 세라믹 미소셀 UO2 소결체의 Cs 포집반응에 대한 열역학적 평가 (Thermodynamic Evaluations of Cesium Capturing Reaction in Ceramic Microcell UO2 Pellet for Accident-tolerant Fuel)

  • 전상채;김건식;김동주;김동석;김종헌;윤지해;양재호
    • 방사성폐기물학회지
    • /
    • 제17권1호
    • /
    • pp.37-46
    • /
    • 2019
  • 사고저항성 핵연료의 일환으로 $UO_2$ 입자가 세라믹 셀 벽으로 둘러싸인 미세구조를 갖는 세라믹 미소셀 $UO_2$ 소결체를 개발 중이다. 이는 핵분열생성물들을 $UO_2$ 펠렛 내에 포집하여 펠렛 외부로의 방출을 저감함으로써 봉내압 상승을 완화하고 응력부식균열 발생률을 낮춘다. 생성량이나 방사능 측면에서 위험한 핵분열생성물 중 하나로 여겨지는 세슘은 세라믹 미소셀소결체 내에서 셀 물질과 화학반응 하여 포집될 수 있다. 따라서, 세슘 포집능은 해당 화학반응의 열역학적, 속도론적 특성에 의해 결정된다. 역으로, 미소셀 소결체의 조성설계 시 해당 반응에 대한 열역학적 예측이 필수적이다. 본 연구는 세라믹 현재 개발 중인 여러 미소셀 조성(Si-Ti-O, Si-Cr-O, Si-Al-O)에 대해 세슘의 포집능을 평가하는 열역학적 계산을 다룬다. 계산에 앞서 먼저 HSC Chemistry를 이용해 세슘과 셀 물질의 물리/화학적 상태를 정의한 후, LWR 정상운전 모사환경에서 계산된 세슘포텐셜(${\Delta}G_{Cs}$)과 산소포텐셜(${\Delta}G_{O_2}$)에 근거하여 세슘포집 반응성을 평가하였다. 계산 결과에 근거하면, 세슘 포집반응은 상기 모든 조성에서 자발적일 것으로 예상되며 이로써 조성설계의 근거를 제시함과 동시에 세슘의 포집능을 평가하는 효과적인 방법을 제공한다.

Ammonium uranate hydrate wet reconversion process for the production of nuclear-grade UO2 powder from uranyl nitrate hexahydrate solution

  • Byungkuk Lee ;Seungchul Yang;Dongyong Kwak ;Hyunkwang Jo ;Youngwoo Lee;Youngmoon Bae ;Jayhyung Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2206-2214
    • /
    • 2023
  • The existing wet reconversion processes for the recovery of scraps generated in manufacturing of nuclear fuel are complex and require several unit operation steps. In this study, it is attempted to simplify the recovery process of high-quality fuel-grade UO2 powder. A novel wet reconversion process for uranyl nitrate hexahydrate solution is suggested by using a newly developed pulsed fluidized bed reactor, and the resultant chemical characteristics are evaluated for the intermediate ammonium uranate hydrate product and subsequently converted UO2 powder, as well as the compliance with nuclear fuel specifications and advantages over existing wet processes. The UO2 powder obtained by the suggested process improved fuel pellet properties compared to those derived from the existing wet conversion processes. Powder performance tests revealed that the produced UO2 powder satisfies all specifications required for fuel pellets, including the sintered density, increase in re-sintered density, and grain size. Therefore, the processes described herein can aid realizing a simplified manufacturing process for nuclear-grade UO2 powders that can be used for nuclear power generation.

탈피복 기계 장치와 건식 분말화 장치 설계 (Design of the Dry Powder Device and Slitting Machine Device)

  • 정재후;윤지섭;김영환;이종열;홍동희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.630-633
    • /
    • 1997
  • Spent fuel decladding device and dry voloxidizer is to separate the spent pellet from spent fuel rod cut by 250mm and to convert the spent pellet into powder form for reuse and/or disposal of the spent fuel. There are two methods in decladding and voloxidation of spent fuel, that is, wet method with chemical material and dry method with mechanical device. In this study, to examine the fuel rod decladding process and the pellet voloxidation process, the devices for the spent fuel decladding and the pellet voloxidation with dry method are developed. The decladding machine is designed to separate pellets from fuel rod by slitting device. And, the voloxidizer is designed to convert the spent pellet which is ceramic form into powder form by oxidation using the multi step mesh, vibrator, and air in the high temperature environment. The result of this study, such as operation condition et., will be utilized in the design of the machine for demonstration.

  • PDF