Browse > Article
http://dx.doi.org/10.7733/jnfcwt.2019.17.1.37

Thermodynamic Evaluations of Cesium Capturing Reaction in Ceramic Microcell UO2 Pellet for Accident-tolerant Fuel  

Jeon, Sang-Chae (Korea Atomic Energy Research Institute)
Kim, Keon Sik (Korea Atomic Energy Research Institute)
Kim, Dong-Joo (Korea Atomic Energy Research Institute)
Kim, Dong Seok (Korea Atomic Energy Research Institute)
Kim, Jong Hun (Korea Atomic Energy Research Institute)
Yoon, Jihae (Korea Atomic Energy Research Institute)
Yang, Jae Ho (Korea Atomic Energy Research Institute)
Publication Information
Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT) / v.17, no.1, 2019 , pp. 37-46 More about this Journal
Abstract
As candidates for accident-tolerant fuels, ceramic microcell fuels, which are distinguished by their peculiar microstructures, are being developed; these fuels have $UO_2$ grains surrounded by cell walls. They contribute to nuclear fuel safety by retention of fission products within the $UO_2$ pellet, reducing rod pressure and incidence of SCC failure. Cesium, a hazardous fission product in terms of amount and radioactivity, can be captured by chemical reactions with ceramic cell materials. The capture-ability of cesium therefore depends on the thermodynamics of the capturing reaction. Conversely, compositional design of cell materials should be based on thermodynamic predictions. This study proposes thermodynamic calculations to evaluate the cesium capture-ability of three ceramic microcell compositions: Si-Ti-O, Si-Cr-O and Si-Al-O. Prior to the calculations, the chemical and physical states of the cesium and the cell materials were defined. Then, the reactivity was evaluated by calculating the cesium potential (${\Delta}G_{Cs}$) and oxygen potential (${\Delta}G_{O_2}$) under simulated LWR circumstances of normal operation. Based on the results, cesium capture is expected to be spontaneous in all cell compositions, providing a basis for the compositional design of ceramic microcell fuels as well as a facile way for evaluating cesium capture.
Keywords
Accident-tolerant fuel(ATF); Ceramic microcell $UO_2$; Cesium capturing; HSC Chemistry; Cesium potential; Oxygen potential;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 I. Younker and M. Fratoni, "Neutronic Evaluation of Coating and Cladding Materials for Accident Tolerant Fuels", Prog. Nucl. Energy, 88, 10-18 (2016).   DOI
2 M.Q. Awan, L. Cao, and H. Wu, "Neutronic Design and Evaluation of a PWR Fuel Assembly with Accident Tolerant-fully Ceramic Micro-encapsulated (AT-FCM) Fuel", Nucl. Eng. Des., 319, 126-139 (2017).   DOI
3 K.D. Johnson, A.M. Raftery, D.A. Lopes, and J. Wallenius, "Fabrication and Microstructural Analysis of UN-$U_3Si_2$ Composites for Accident Tolerant Fuel Applications", J. Nucl. Mater., 477, 18-23 (2016).   DOI
4 C.P. Deck, G.M. Jacobsen, J. Sheeder, O. Gutierrez, J. Zhang, J. Stone, H.E. Khalifa, and C.A. Back, "Characterization of SiC-SiC Composites for Accident Tolerant Fuel Cladding", J. Nucl. Mater., 466, 667-681 (2015).   DOI
5 X. Wu, T. Kozlowski, and J.D. Hales, "Neutronics and Fuel Performance Evaluation of Accident Tolerant Fe-CrAl Cladding under Normal Operation Conditions", Ann. Nucl. Energy, 85, 763-775 (2015).   DOI
6 D.J. Kim, K.S. Kim, D.S. Kim, J.S. Oh, J.H. Kim, J.H. Yang, and Y.H. Koo, "Development Status of Microcell $UO_2$ Pellet for Accident-tolerant Fuel", Nucl. Eng. Technol., 50(2), 253-258 (2018).   DOI
7 J.H. Park, H.G. Kim, J.Y. Park, Y.I. Jung, D.J. Park, and Y.H. Koo, "High Temperature Steam-oxidation Behavior of Arc Ion Plated Cr Coatings for Accident Tolerant Fuel Claddings", Surf. Coat. Technol., 280, 256-259 (2015).   DOI
8 J.G. Stone, R. Schleicher, C.P. Deck, G.M. Jacobsen, H.E. Khalifa, and C.A. Back, "Stress Analysis and Probabilistic Assessment of Multi-layer SiC-based Accident Tolerant Nuclear Fuel Cladding", J. Nucl. Mater., 466, 682-697 (2015).   DOI
9 Y.H. Koo, J.H. Yang, J.Y. Park, K.S. Kim, H.G. Kim, D.J. Kim, Y.I. Jung, and K.W. Song, "KAERI's development of LWR accident-tolerant fuel", Nucl. Technol., 186(2), 295-304 (2014).   DOI
10 L.N. Grossman, "Interactions in the System Cs(g, l)-$SiO_2-Al_2O_3$", Rev. Int. Hautes Temp. Refract., 16(3), 255-261 (1979).
11 J. Matsunaga, Y. Takagawa, K. Kusagaya, K. Une, R. Yuda, and M. Hirai, "Fundamentals of GNF Al-Si-O Additive Fuel", Proc. of Top Fuel 2009, September 6, 2009, Paris, France.
12 J. Matsunaga, K. Une, and K. Kusagaya, "Chemical Trap Effect of Aluminosilicate Additive Fuel", Proc. of Top Fuel 2010, September 26, 2010, Orlando, USA.
13 A. Roine, Outokumpu HSC Chemistry for Windows, Outokumpu Research Oy: Pori, Finland (2002).
14 Hj. Matzke, "Oxygen Potential Measurements in High Burn up LWR $UO_2$ Fuel", J. Nucl. Mater., 223(1), 1-5 (1995).   DOI
15 K. S. Lee, Introduction to Nuclear Fuels, 1st ed., 180, Hyoil Press, Seoul (2001).
16 T.B. Lindemer, T.M. Besmann, and C.E. Johnson, "Thermodynamic Review and Calculations - alkali Metal Oxide Systems with Nuclear Fuels, Fission Products and Structural Materials", J. Nucl. Mater., 100(1-3), 178-226 (1981).   DOI
17 C.T. Walker, C. Bagger, and M. Mogensen, "Observations on the Release of Cesium from $UO_2$ Fuel", J. Nucl. Mater., 240(1), 32-42 (1996).   DOI
18 J. Spino and P. Peerani, "Oxygen Stoichiometry Shift of Irradiated LWR-fuels at High Burn-ups: Review of Data and Alternative Interpretation of Recently Published Results", J. Nucl. Mater., 375(1), 8-25 (2008).   DOI
19 Hj. Matzke, "Oxygen Potential in the Rim Region of High Burn up $UO_2$ Fuel", J. Nucl. Mater., 208(1-2), 18-26 (1994).   DOI