• 제목/요약/키워드: $SnO_2$sensor

Search Result 250, Processing Time 0.027 seconds

Structural and Optical Properties of AZO/Ag/AZO Films for Dye Sensitized Solar Cell (염료감응 태양전지 응용을 위한 다층박막구조 투명전도막의 특성평가)

  • Cho, Hyun-Jin;Hur, Sung-Gi;Park, Jong-Hyun;Seong, Nak-Jin;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.24-24
    • /
    • 2009
  • 투명전극 (TCO Transparent Conductive Oxide)은 Solar cell, Touch panel, Sensor 등 많은 분야에 이용되어지고 있다. ZnO 그리고 $SnO_2$는 ITO룰 대체하기 위하여 오래전부터 연구가 되어지고 있다. 하지만 ZnO가 가지고 있는 많은 장점에도 불구하고 ITO를 대체하기 위한 전기적 특성이 충분하지 않다. 따라서 ZnO에 Al를 도핑하는 등 다양한 연구가 진행되어왔다. 본 실험은 우수한 광학특성 및 전기적 (10-5) 특성을 확보하기 위하여 AZO/Ag/AZO 다층박막구조 형성하였다. 또한 염료감응 태양전지에 적용하기 위하여 다층박막구조를 이용한 안정성 테스트를 진행하였다.

  • PDF

Properties of ITO thin films fabricated by R.F magnetron sputtering (R.F. magnetron sputtering 법으로 제작한 ITO 박막의 특성)

  • Jeong, W.J.;Park, G.C.;Yoo, Y.T.
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.51-57
    • /
    • 1995
  • Indium Tin Oxide (ITO) thin films have been fabricated by the rf magnetron sputtering technique with a target of a mixture $In_{2}O_{3}$ (90mol%) and $SnO_{2}$ (10mol%). We prepared ITO thin films with substrate temperature 100, 200, 300, 400, $500^{\circ}C$ and post-annealing temperature 300, 400, $500^{\circ}C$. And we analyzed X -ray diffraction patterns, electrical properties, transmission spectra and SEM photographs. As a result, the crystallinity, electrical conductivity and transmittance of ITO thin films were improved with increasing substrate temperature. But, as increasing post-annealing temperature in air, conductivity of the film was decreased. When the ITO thin film was fabricated with substrate temperature of $500^{\circ}C$ and thickness of $3000{\AA}$, its resistivity and transmittance were about $2{\times}10^{-4}{\Omega}cm$ and 85% or more, respectively.

  • PDF

Effect of catalyst configuration on sensing properties of semiconductor gas sensor (반도체식 가스센서의 감지 특성에 미치는 촉매구조의 영향)

  • Hong, Sung-Jei;Han, Jeong-In;Kwak, Min-Gi;Jang, Hyun-Duk;Kim, Chul-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.711-714
    • /
    • 2002
  • 촉매 구조에 따른 반도체식 가스센서의 가스 감지 특성이 고찰되었다. 촉매로는 Pd를 사용하였고, 0.5 ~ 10wt% 의 다양한 농도로 약 15nm 크기의 $SnO_2$ 분말에 도핑, 가스센서를 제작하였다. 또한 열처리 온도를 $500{\sim}600^{\circ}C$로 다르게 하여 각 촉매 구조에 따른 특성의 변화를 관찰하였다. 그 결과 가스 감지 특성은 열처리 온도가 높을수록 감지 특성이 향상되었고, Pd 농도가 5wt% 에서 감도가 0.65로 좋은 감지 특성을 나타내었다. 5wt% Pd가 도핑된 가스센서는 2시간 동안 $400^{\circ}C$에서 aging 후에도 감도 값이 안정된 우수한 특성을 나타내었다.

  • PDF

Fabrication of Ceramic Gas Sensors at Room Temperature and Characteristics (실온동작 세라믹 가스센서의 제작 및 특성)

  • Jung, Jae-Eop;Yoon, Yeu-Kyung;Lee, Sung-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.814-817
    • /
    • 2003
  • As additive Pt of a little to $SnO_2$ that gas sensing property is superior oxide-semiconductor material to fabricate gas sensor that operation is possible at room temperature and fabricated ceramic gas sensing devices. And, the change amount and sintering temperature of addition material investigated gas sensitivity by change of operation temperature, humidity relativity, Long-term stability and hysteresis. And achieved SEM and XRD analysis for characteristics searching examination of devices.

  • PDF

Design and Fabrication of multi-channel gas leakage monitoring system using CPLD (CPLD칩을 이용한 다채널 가스누출 경보시스템의 설계 및 제작)

  • 정도운;정완영;이덕동
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.925-928
    • /
    • 1999
  • A multi-channel gas leakage monitoring system was designed and fabricated by using CPLD(complex Programmable Logic .Device) for monitoring and controlling the leakage of natural gas from supplying-pipes under the ground. Fabricated SnO$_2$thick film gas sensor elements were attached on safeguard steel plate of natural gas supplying pipes, and the local monitoring system in this study received the signal from the gas sensors. The monitoring system was implemented by using CPLD chip to reduce the development time and implement simple one chip system. The time division multi-channel system received the input signal from individual gas sensor at one of divided times by multiplexor and signal processed sequentially. The system reduced the size of peripheral circuit resulted in implementation of creditable simple system.

  • PDF

Surface morphology and electrical properties of ITO thin films fabricated by RF magnetron sputtering method (고주파 마그네트론 스퍼터링 방법으로 제작한 ITO 박막의 표면 형태 및 전기적 특성)

  • Kwon, Sung-Yeol
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.71-75
    • /
    • 2006
  • ITO (Indium Tin Oxide) thin films have been fabricated by rf magnetron sputtering with a target of a mixture $In_{2}O_{3]$(90 wt%) and $SnO_{2}$ (10 wt%). ITO films were sputtered with substrate temperature from 30 to $300^{\circ}C$ and working pressure from 1 to under 0.1 m Torr. ITO thin films surface morphology and electrical properties analyzed by SEM Photographs, and X-ray diffractions patterns. The resistivity of ITO thin films was $1.8{\times}10^{-5}{\Omega}/cm$.

Bond Strength of TiO2 Coatings onto FTO Glass for a Dye-sensitized Solar Cell

  • Lee, Deuk Yong;Kim, Jin-Tae;Kim, Young-Hun;Lee, In-Kyu;Lee, Myung-Hyun;Kim, Bae-Yeon
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.395-401
    • /
    • 2012
  • The bond strength of three types of $TiO_2$ coatings onto fluorine-doped $SnO_2$ (FTO) glass was investigated with the aid of a tape test according to ASTM D 3359-95. Transmittance was then measured using an UV-vis spectrophotometer in the wavelength range of 300 nm to 800 nm to evaluate the extent of adhesion of $TiO_2$ nanorods/nanoparticles on FTO glass. A sharp interface between the coating layer and the substrate was observed for single $TiO_2$ coating ($TiO_2$ nanorods/FTO glass), which may be detrimental to the bonding strength. In multicoating sample ($TiO_2$ nanorod/$TiO_2$ nanoparticle/$TiO_2$ nanoparticle/FTO glass), the tape test was not performed due to severe peeling-off prior to the test. On the other hand, the dual coating sample ($TiO_2$ nanorod/$TiO_2$ nanoparticle/FTO glass) showed minimum variation of transmittance (4%) after the test, suggesting that the topcoat adheres well with the FTO substrate due to the presence of the $TiO_2$ nanoparticle buffer layer. The use of a $TiO_2$ nanorod electrode layer with good adhesion may be attributed to the excellent dye sensitized solar cell performance.

High-sensitivity Nitrogen Dioxide Gas Sensor Based on P3HT-doped Lead Sulfide Quantum Dots (P3HT가 도핑된 황화납 양자점 기반의 고감도 이산화질소 가스 센서)

  • JinBeom Kwon;YunTae Ha;SuJi Choe;Soobeen Baek;Daewoong Jung
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.169-173
    • /
    • 2023
  • With the increasing concern of global warming caused by greenhouse gases owing to the recent industrial development, there is a growing need for advanced technology to control these emissions. Among the various greenhouse gases, nitrogen dioxide (NO2) is a major contributor to global warming and is mainly released from sources, such as automobile exhaust and factories. Although semiconductor-type NO2 gas sensors, such as SnO2, have been extensively studied, they often require high operating temperatures and complicated manufacturing processes, while lacking selectivity, resulting in inaccurate measurements of NO2 gas levels. To address these limitations, a novel sensor using PbS quantum dots (QDs) was developed, which operates at low temperatures and exhibits high selectivity toward NO2 gas owing to its strong oxidation reaction. Furthermore, the use of P3HT conductive polymer improved the thin film quality, reactivity, and reaction rate of the sensor. The sensor demonstrated the ability to accurately measure NO2 gas concentrations ranging from 500 to 100 ppm, with a 5.1 times higher sensitivity, 1.5 times higher response rate, and 1.15 times higher recovery rate compared with sensors without P3HT.

Fabrication and Characteristics of Micro Platform for Micro Gas Sensor with Low Power Consumption (마이크로 가스센서의 저전력 구동을 위한 마이크로 플랫폼의 제작과 특성)

  • Jang, Woong-Jin;Park, Kwang-Bum;Kim, In-Ho;Park, Soon-Sup;Park, Hyo-Derk;Lee, In-Kyu;Park, Joon-Shik
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.317-321
    • /
    • 2011
  • A Micro platform for micro gas sensor consisted of micro heater, insulator, and sensing electrode on 2 ${\mu}m$ thick $SiN_x$ membrane. Three types of micro platforms were designed and fabricated with membrane sizes. Total size of micro platform was 2.6 mm by 2.6 mm. Measured power consumptions were 28 mW, 28 mW, and 32.5 mW for Type 1, Type 2, and Type 3. At this moment, temperatures of membranes on the platforms were $295^{\circ}C$, $297^{\circ}C$, and $296^{\circ}C$, respectively. Fabricated micro platform considered appropriate to apply for low power consumption micro gas sensor. Micro gas sensors were prepared by the sequence that $SnO_2$ nanopowder pastes were dropped on membrane of Type 1 platforms, dried in oven, heat-treated with micro heaters in platforms. One of the micro gas sensors was tested for gas response to 1157 ppm, 578 ppm, and 231 ppm of methane and 1.68 ppm, 0.84 ppm, and 0.42 ppm of $NO_2$.

Chemiresistive Gas Sensors for Detection of Chemical Warfare Agent Simulants

  • Lee, Jun Ho;Lee, Hyun-Sook;Kim, Wonkyung;Lee, Wooyoung
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.139-145
    • /
    • 2019
  • Precautionary detection of chemical warfare agents (CWAs) has been an important global issue mainly owing to their toxicity. To achieve proper detection, many studies have been conducted to develop sensitive gas sensors for CWAs. In particular, metal-oxide semi-conductors (MOS) have been investigated as promising sensing materials owing to their abundance in nature and excellent sensitivity. In this review, we mainly focus on various MOS-based gas sensors that have been fabricated for the detection of two specific CWA simulants, 2-chloroethyl ethyl sulfide (2-CEES) and dimethyl methyl phosphonate (DMMP), which are simulants of sulfur mustard and sarin, respectively. In the case of 2-CEES, we mainly discuss $CdSnO_3-$ and ZnO-based sensors and their reaction mechanisms. In addition, a method to improve the selectivity of ZnO-based sensors is mentioned. Various sensors and their sensing mechanisms have been introduced for the detection of DMMP. As the reaction with DMMP may directly affect the sensing properties of MOS, this paper includes previous studies on its poisoning effect. Finally, promising sensing materials for both gases are proposed.