• 제목/요약/키워드: $SnO_2$ thin film

검색결과 340건 처리시간 0.031초

$SnO_2$박막저항의 전기적 특성에 미치는 첨가제의 영향 (Effect of Dopants on Electrical Properties of $SnO_2$Thin Film Resistors)

  • 구본급;강병돈
    • 한국전기전자재료학회논문지
    • /
    • 제13권8호
    • /
    • pp.658-666
    • /
    • 2000
  • Sb and Sb-Fe doped SnO$_2$film resistors were prepared by spray pyrolysis technique. The effects of Sb and Sb-Fe addition on TCR and electrical properties of SnO$_2$film resistors were studied. Also the dependence of electrical properties on the substrate temperature and substrate-nozzle distance was investigated. The Sn-Sb system with 7.9 mol% SbCl$_3$(STO-406) and Sn-Sb-Fe systems with 7.3 mol% SbCl$_3$+7.3 mol% FeCl$_3$(STO-407) and with 3.4 mol% SbCl$_3$+7.7mol% FeCl$_3$(STO-408) were prepared. Both of the systems Sn-Sb and Sn-Sb-Fe represented nonlinearity of TCR with temperature. As the amount of Fe increased TCR was shifted to positive direction. Decreasing Sb or increasing Fe caused resistivity to increase. Also increasing Fe caused the crystallization degree of rutile structure in SnO$_2$film to decrease. The electrical resistivity decreased with increasing substrate temperature The resistivity decreased with increasing substrate-nozzle distance in the ranges from 15 to 25 cm and increased rapidly at the distance over 25cm.

  • PDF

마이크로스트립 선로에서 Sn-O 박막의 전도노이즈 흡수 특성 (Conduction Noise Absorption by Sn-O Thin Films on Microstrip Lines)

  • 김성수
    • 대한금속재료학회지
    • /
    • 제49권4호
    • /
    • pp.329-333
    • /
    • 2011
  • To develop wide-band noise absorbers with a special design for low-frequency performance, this study proposes a tin oxide (Sn-O) thin films as the noise absorbing materials in a microstrip line. Sn-O thin films were deposited on polyimide film substrates by reactive sputtering of the Sn target under flowing $O_{2}$ gas, exhibiting a wide variation of surface resistance (in the range of $10^{0}-10^{5}{\Omega}$) depending on the oxygen partial pressure during deposition. The microstrip line with characteristic impedance of $50\Omega$ was used for the measurement of noise absorption by the Sn-O films. The reflection parameter $(S_{11})$ increased with a decrease of surface resistance due to an impedance mismatch at the boundary between the film and the microstrip line. Meanwhile, the transmission parameter $(S_{21})$ diminished with a decrease of surface resistance resulting from an Ohmic loss of the Sn-O films. The maximum noise absorption predicted at an optimum surface resistance of the Sn-O films was about $150{\Omega}$. For this film, greater power absorption is predicted in the lower frequency region (about 70% at 1 GHz) than in conventional magnetic sheets of high magnetic loss, indicating that Ohmic loss is the predominant loss parameter for the conduction noise absorption in the low frequency band.

Electrical Characterization of Amorphous Zn-Sn-O Transistors Deposited through RF-Sputtering

  • Choi, Jeong-Wan;Kim, Eui-Hyun;Kwon, Kyeong-Woo;Hwang, Jin-Ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.304.1-304.1
    • /
    • 2014
  • Flat-panel displays have been growing as an essential everyday product in the current information/communication ages in the unprecedented speed. The forward-coming applications require light-weightness, higher speed, higher resolution, and lower power consumption, along with the relevant cost. Such specifications demand for a new concept-based materials and applications, unlike Si-based technologies, such as amorphous Si and polycrystalline Si thin film transistors. Since the introduction of the first concept on the oxide-based thin film transistors by Hosono et al., amorphous oxide thin film transistors have been gaining academic/industrial interest, owing to the facile synthesis and reproducible processing despite of a couple of shortcomings. The current work places its main emphasis on the binary oxides composed of ZnO and SnO2. RF sputtering was applied to the fabrication of amorphous oxide thin film devices, in the form of bottom-gated structures involving highly-doped Si wafers as gate materials and thermal oxide (SiO2) as gate dielectrics. The physical/chemical features were characterized using atomic force microscopy for surface morphology, spectroscopic ellipsometry for optical parameters, X-ray diffraction for crystallinity, and X-ray photoelectron spectroscopy for identification of chemical states. The combined characterizations on Zn-Sn-O thin films are discussed in comparison with the device performance based on thin film transistors involving Zn-Sn-O thin films as channel materials, with the aim to optimizing high-performance thin film transistors.

  • PDF

가연성 가스 인식을 위한 $SnO_2$계열의 박막 가스센서 ($SnO_2$-based thin film gas sensors in array for recognizing inflammable gases)

  • 이대식;심창현;이덕동
    • 한국진공학회지
    • /
    • 제10권3호
    • /
    • pp.289-297
    • /
    • 2001
  • 가연성 가스의 검지 및 인식을 위하여, SnO$_2$계열의 4가지 종류의 박막을 형성하였다. 감지막 형성을 위하여, Sn, Pt/Sn, Au/Sn 그리고 Pt, Au/Sn 막을 Sn의 열증착과 귀금속의 스퍼터링으로 증착하였다. 증착된 박막들을 $700^{\circ}C$ 정도에서 2 시간 열산화시켜 $SnO_2$계열의 감지막을 형성하였다. 제작된 박막은 tetragonal구조의 $SnO_2$이었고, 가스 흡착을 위한 가스 흡착점과 기공도를 많이 갖고 있었다. 스퍼터로 형성된 박막보다 열산화법으로 형성된 박막이 고감도를 보였다. 제작 박막들은 작업환경기준치정도의 저농도에서 측정 가연성 가스(부탄, 프로판, LPG, 일산화탄소)에 대해 고감도와 재현성을 나타내었다. 특히, 백금(30 $\AA$)을 첨가한 박막이 LPG와 부탄 가스에 대해, 순수 열산화된 $SnO_2$ 박막이 프로판과 일산화탄소에 대하여 가장 고감도를 나타내었다. 이들 센서들의 각 가스별로 차별화된 감도패턴을 이용하여 주성분 분석 기법을 통해 환경기준치(LEL, TLV) 범위에서 부탄, 프로판, LPG, 일산화탄소와 같은 가연성 가스의 종류 인식 및 정량을 인식할 수 있었다.

  • PDF

Combinatorial 방법으로 증착한 Zn-Sn-O계 박막의 열처리 효과 (Annealing effect of Zn-Sn-O films deposited using combinatorial method)

  • 고지훈;김인호;김동환;이경석;박종극;이택성;백영준;정병기;김원목
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.998-1001
    • /
    • 2004
  • ZnO, $SnO_2$ 타겟 각각의 RF 파워를 50 W, 38 W로 고정시킨 후 combinatorial RF magnetron sputtering법을 사용하여 기판 위치에 따라서 조성 구배를 주어 여러 가지 조성의 Zn-Sn-O(ZTO) 박막을 제작하였다. 시편의 열처리에 따른 물성 변화를 분석하기 위해 Rapid Thermal Annealer(RTA)을 이용하여 450, $650{^\circ}C$의 온도 및 $10^{-2}$ Ton의 진공 분위기에서 각각 1 시간 동안 열처리하였다. XRD 분석 결과 상온에서 제작된 ZTO 박막은 Sn 18 at%의 조성을 갖는 시편을 제외하고 모두 비정질상으로 나타났다. $450^{\circ}C$에서 열처리 후 구조적인 변화는 보이지 않았으나, 캐리어 농도와 이동도는 증가하였으며 Sn 54 at%의 조성에서 최고 $25.4cm^2/Vsec$의 전자 이동도를 나타내었다. $26{\leq}Sn$ $at%{\leq}65$의 조성 범위를 갖는 박막은 가시광 영역에서 80 % 이상의 투과도를 가졌으며 $650^{\circ}C$에서 결정화가 되면서 투과도가 증가하였다.

  • PDF

Pd이 도핑된 $SnO_2$ 박막 가스감지막의 특성 (Characteristics of Pd doped $SnO_2$ gas sensitive thin films)

  • 김진해;김대현;이용성;김정규;전춘배;박효덕;박기철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.1779-1781
    • /
    • 2000
  • Pd doped $SnO_2$ thin film sensors were prepared on alumina substrate by rf magnetron sputtering method. The sensitivity of thin film was investigated by varying the heat-treatment temperature, film thickness and gas species. The thin film heat-treated at 600$^{\circ}C$ and film thickness of 5000${\AA}$ showed the highest sensitivity at an operating temperature of 400$^{\circ}C$.

  • PDF

$SnO_2$/a-Se/AI 소자의 특성 (Characteristics of $SnO_2$/a-Se/AI sample)

  • 박계춘;정운조;유용택
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제7권1호
    • /
    • pp.7-14
    • /
    • 1994
  • Structural and optical characteristics in $SnO_2$/a-Se/Al sample by aging variation and applying constant voltage had been investigated. a-Se was varied with monoclinic structure and its surface was greatly exchanged. Its capacitance was first decreased and then increased and its photo-current, photo-voltage and photo-capacitance were increased gradually with day and applying voltage. From the results, crystallization of a-Se and dopant trap level formation had been identified. Also, it was acknowledged $SnO_2$/a-Se/Al sample is useful in photovoltaic and solid thin film cell.

  • PDF

Detection of Blood Agent Gas Using $SnO_2$ Thin Film Gas Sensor

  • Choi, Nak-Jin;Kwak, Jun-Hyuk;Lim, Yeon-Tae;Joo, Byung-Su;Lee, Duk-Dong;Bahn, Tae-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제20권E2호
    • /
    • pp.69-75
    • /
    • 2004
  • In this study, thin film gas sensor based on tin oxide was fabricated to examine its characteristics. Target gas is acetonitrile ($CH_3$CN) which is a blood simulant for the chemical warfare agent. Sensing materials are SnO$_2$ SnO$_2$/Pt, and Sn/Pt with thickness from 1000 to 3000 $\AA$. The sensor consists of a sensing electrode with inter-digit (IDT) type in front side and a heater in rear side. Resistance changes of sensing materials are monitored on real time basis using a data acquisition board with a 12-bit analog to digital converter. Sensitivities are measured at different operating temperatures also with different gas concentrations and film thickness. The high sensitivity is obtained for Sn (3000 $\AA$)/Pt (30 $\AA$) at 30$0^{\circ}C$ for 3 ppm. Response and recovery times were about 40 and 160 s, respectively. Repetition measurements showed very good results with $\pm$3% in full scale range.

가스센서 적용을 위한 SnO2 박막의 CMP 특성 연구 (A Study on CMP Properties of SnO2 Thin Film for Application of Gas Sensor)

  • 이우선;최권우;김남훈;박진성;서용진
    • 한국전기전자재료학회논문지
    • /
    • 제17권12호
    • /
    • pp.1296-1300
    • /
    • 2004
  • SnO$_2$ is one of the most suitable gas sensor materials. The microstructure and surface morphology of films must be controlled because the electrical and optical properties of SnO$_2$ films depend on these characteristics. The effects of chemical mechanical polishing(CMP) on the variation of morphology of SnO$_2$ films prepared by RF sputtering system were investigated. The commercially developed ceria-based oxide slurry, silica-based oxide slurry, and alumina-based tungsten slurry were used as CMP slurry. Non-uniformities of all slurries met stability standards of less than 5 %. Silica slurry had the highest removal rate among three different slurries, sufficient thin film topographies and suitable root mean square(RMS) values.

전자빔 표면조사에 따른 SnO2 박막의 전기적, 광학적 특성 연구 (Effect of Electron Irradiation on the Electrical and Optical Properties of SnO2 Thin Films)

  • 송영환;문현주;김대일
    • 열처리공학회지
    • /
    • 제29권3호
    • /
    • pp.109-112
    • /
    • 2016
  • We have considered the influence of electron irradiation on the optical and electrical properties of $SnO_2$ thin films deposited with reactive RF magnetron sputtering. After deposition, the films electron irradiated at 300 eV shows a lower sheet resistance of $277{\Omega}/{\square}$ and the optical transmittance in a visible wave length region also influenced with the electron irradiation energy. The film that electron irradiated at 400 eV shows a higher optical transmittance of 82.6% in this study. By comparison of figure of merit, it is concluded that the post-deposition electron irradiation at 300 eV is the optimum condition for the enhancement of opto-electrcal performance of $SnO_2$ thin film in this study.