Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.4.329

Conduction Noise Absorption by Sn-O Thin Films on Microstrip Lines  

Kim, Sung-Soo (Department of Advanced Materials Engineering, Chungbuk National University)
Publication Information
Korean Journal of Metals and Materials / v.49, no.4, 2011 , pp. 329-333 More about this Journal
Abstract
To develop wide-band noise absorbers with a special design for low-frequency performance, this study proposes a tin oxide (Sn-O) thin films as the noise absorbing materials in a microstrip line. Sn-O thin films were deposited on polyimide film substrates by reactive sputtering of the Sn target under flowing $O_{2}$ gas, exhibiting a wide variation of surface resistance (in the range of $10^{0}-10^{5}{\Omega}$) depending on the oxygen partial pressure during deposition. The microstrip line with characteristic impedance of $50\Omega$ was used for the measurement of noise absorption by the Sn-O films. The reflection parameter $(S_{11})$ increased with a decrease of surface resistance due to an impedance mismatch at the boundary between the film and the microstrip line. Meanwhile, the transmission parameter $(S_{21})$ diminished with a decrease of surface resistance resulting from an Ohmic loss of the Sn-O films. The maximum noise absorption predicted at an optimum surface resistance of the Sn-O films was about $150{\Omega}$. For this film, greater power absorption is predicted in the lower frequency region (about 70% at 1 GHz) than in conventional magnetic sheets of high magnetic loss, indicating that Ohmic loss is the predominant loss parameter for the conduction noise absorption in the low frequency band.
Keywords
thin films; vapor deposition; electrical properties; electrical conductivity/resistivity; noise absorbers;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 H. Matsushita, Electromagnetic Shielding and Absorbing Practical Technology Practical Manual, p.185-189, Mimatsu Co. Tokyo (2006).
2 S. Yoshida, M. Sato, E. Sugawara, and Y. Shimada, J. Appl. Phys. 85, 4636 (1999).   DOI   ScienceOn
3 S. T. Kim, Y. G. Park, and S. S. Kim, Met. Mater. Int. 14, 233 (2008).   DOI   ScienceOn
4 K. S. Lee, Y. C. Yun, I. B. Jeong, and S. S. Kim, Mater. Sci. Forum 534-536, 1465 (2007).
5 J. B. Kim and T. H. Noh, J. Kor. Inst. Met. & Mater. 47, 866 (2009).
6 Y. Shimada, M. Yamaguchi, S. Ohnuma, T. Itoh, W. D. Li, S. Ikeda, K. H. Kim, and H. Nagura, IEEE Trans. Magn. 39, 3052 (2003).   DOI   ScienceOn
7 S. Ohnuma, H. Nagura, H. Fugimori, and T. Masumoto, IEEE Trans. Magn. 40, 2712 (2004).   DOI   ScienceOn
8 K. H. Kim, M. Yamaguchi, K. I. Arai, H. Nagura, and S. Ohnuma, J. Appl. Phys. 93, 8002 (2003).   DOI   ScienceOn
9 N. Matsushita, T. Nakamura, and M. Abe, J. Appl. Phys. 93, 7133 (2003).   DOI   ScienceOn
10 K. Kondo, T. Chiba, H. Ono, S. Yoshida, Y. Shimada, N. Matsushita, and M. Abe, J. Magn. Magn. Mater. 301, 107 (2005).
11 S. H. Kim and S. S. Kim, J. Appl. Phys. 108, 024904 (2010).   DOI   ScienceOn
12 H. One, T. Ito, S. Yoshida, Y. Takase, O. Hashimoto, and Y. Shimada, IEEE Trans. Magn. 40, 2853 (2004).   DOI   ScienceOn