DOI QR코드

DOI QR Code

Conduction Noise Absorption by Sn-O Thin Films on Microstrip Lines

마이크로스트립 선로에서 Sn-O 박막의 전도노이즈 흡수 특성

  • Kim, Sung-Soo (Department of Advanced Materials Engineering, Chungbuk National University)
  • 김성수 (충북대학교 신소재공학과, 산업과학기술연구소)
  • Received : 2011.01.06
  • Published : 2011.04.25

Abstract

To develop wide-band noise absorbers with a special design for low-frequency performance, this study proposes a tin oxide (Sn-O) thin films as the noise absorbing materials in a microstrip line. Sn-O thin films were deposited on polyimide film substrates by reactive sputtering of the Sn target under flowing $O_{2}$ gas, exhibiting a wide variation of surface resistance (in the range of $10^{0}-10^{5}{\Omega}$) depending on the oxygen partial pressure during deposition. The microstrip line with characteristic impedance of $50\Omega$ was used for the measurement of noise absorption by the Sn-O films. The reflection parameter $(S_{11})$ increased with a decrease of surface resistance due to an impedance mismatch at the boundary between the film and the microstrip line. Meanwhile, the transmission parameter $(S_{21})$ diminished with a decrease of surface resistance resulting from an Ohmic loss of the Sn-O films. The maximum noise absorption predicted at an optimum surface resistance of the Sn-O films was about $150{\Omega}$. For this film, greater power absorption is predicted in the lower frequency region (about 70% at 1 GHz) than in conventional magnetic sheets of high magnetic loss, indicating that Ohmic loss is the predominant loss parameter for the conduction noise absorption in the low frequency band.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. H. Matsushita, Electromagnetic Shielding and Absorbing Practical Technology Practical Manual, p.185-189, Mimatsu Co. Tokyo (2006).
  2. S. Yoshida, M. Sato, E. Sugawara, and Y. Shimada, J. Appl. Phys. 85, 4636 (1999). https://doi.org/10.1063/1.370432
  3. S. T. Kim, Y. G. Park, and S. S. Kim, Met. Mater. Int. 14, 233 (2008). https://doi.org/10.3365/met.mat.2008.04.233
  4. K. S. Lee, Y. C. Yun, I. B. Jeong, and S. S. Kim, Mater. Sci. Forum 534-536, 1465 (2007).
  5. J. B. Kim and T. H. Noh, J. Kor. Inst. Met. & Mater. 47, 866 (2009).
  6. Y. Shimada, M. Yamaguchi, S. Ohnuma, T. Itoh, W. D. Li, S. Ikeda, K. H. Kim, and H. Nagura, IEEE Trans. Magn. 39, 3052 (2003). https://doi.org/10.1109/TMAG.2003.815892
  7. S. Ohnuma, H. Nagura, H. Fugimori, and T. Masumoto, IEEE Trans. Magn. 40, 2712 (2004). https://doi.org/10.1109/TMAG.2004.834240
  8. K. H. Kim, M. Yamaguchi, K. I. Arai, H. Nagura, and S. Ohnuma, J. Appl. Phys. 93, 8002 (2003). https://doi.org/10.1063/1.1558084
  9. N. Matsushita, T. Nakamura, and M. Abe, J. Appl. Phys. 93, 7133 (2003). https://doi.org/10.1063/1.1558198
  10. K. Kondo, T. Chiba, H. Ono, S. Yoshida, Y. Shimada, N. Matsushita, and M. Abe, J. Magn. Magn. Mater. 301, 107 (2005).
  11. S. H. Kim and S. S. Kim, J. Appl. Phys. 108, 024904 (2010). https://doi.org/10.1063/1.3456515
  12. H. One, T. Ito, S. Yoshida, Y. Takase, O. Hashimoto, and Y. Shimada, IEEE Trans. Magn. 40, 2853 (2004). https://doi.org/10.1109/TMAG.2004.832492