• 제목/요약/키워드: $SiN_X$

Search Result 942, Processing Time 0.144 seconds

Optical Properties of Silicon Oxide (SiOx, x<2) Thin Films Deposited by PECVD Technique (PECVD 방법으로 증착한 SiOx(x<2) 박막의 광학적 특성 규명)

  • Kim, Youngill;Park, Byoung Youl;Kim, Eunkyeom;Han, Munsup;Sok, Junghyun;Park, Kyoungwan
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.9
    • /
    • pp.732-738
    • /
    • 2011
  • Silicon oxide thin films were deposited by using a plasma-enhanced chemical-vapor deposition technique to investigate the light emission properties. The photoluminescence characteristics were divided into two categories along the relative ratio of the flow rates of $SiH_4$ and $N_2O$ source gases, which show light emission in the broad/visible range and a light emission peak at 380 nm. We attribute the broad/visible light emission and the light emission peak to the quantum confinement effect of nanocrystalline silicon and the Si=O defects, respectively. Changes in the photoluminescence spectra were observed after the post-annealing processes. The photoluminescence spectra of the broad light emission in the visible range shifted to the long wavelength and were saturated above an annealing temperature of $900^{\circ}C$ or after 1 hour annealing at $970^{\circ}C$. However, the position of the light emission peak at 380 nm did not change at all after the post-annealing processes. The light emission intensities at 380 nm initially increased, and decreased at annealing temperatures above $700^{\circ}C$ or after 1 hour annealing at $700^{\circ}C$. The photoluminescence behaviors after the annealing processes can be explained bythe size change of the nanocrystalline silicon and the density change of Si=O defect in the films, respectively. These results support the possibility of using a silicon-based light source for Si-optoelectronic integrated circuits and/or display devices.

Characterization of Silicon Nitride Coating Films (Si-N 코팅막의 기계적 물성 및 구조 분석)

  • Go, Cheolho;Kim, Bongseob;Yun, Jondo;Kim, Kwangho
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.5 s.276
    • /
    • pp.359-365
    • /
    • 2005
  • Silicon nitride coating films with various ratios of nitrogen to silicon contents were prepared and characterized. The film was coated on silicon substrate by sputtering method with changing nitrogen gas flow rate in a chamber. The nitrogen to silicon ratio was found to have values in a range from 0 to 1.4. Coated film was characterized with scanning electron microscopy, transmission electron microscopy, electron probe microanalysis, nanoindentation scanning probe microscopy, x-ray photon spectrometry, and Raman spectrometry. Silicon nitride phase in all samples showed amorphous nature regardless of N/Si ratio. When N/Si ratio was 1.25, hardness and elastic modulus of silicon nitride film showed maximum with 22 GPa and 210 GPa, respectively. Those values decreased, when N/Si ratio was higher than 1.25. Raman spectrum showed that no silicon phase exist in the film. XPS result showed that the silicon-nitrogen bond was dominant way for atomic bonding in the film. The structure and property was explained with Random Bonding Model(RBM) which was consistent with the microstructure and chemistry analysis for the coating films.

Pulse Electrodeposition and Characterization of Ni-Si3N4 Composite Coatings

  • Gyawali, Gobinda;Woo, Dong-Jin;Lee, Soo-Wohn
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.5
    • /
    • pp.224-229
    • /
    • 2010
  • $Ni-Si_3N_4$ nano-composite coatings were prepared by pulse current (PC) electrodeposition and direct current (DC) electrodeposition techniques. The micro-structure of the coatings was characterized by scanning electron microscopy (SEM), vickers microhardness, X-Ray Diffraction (XRD) and wear-friction tests. The results showed that the micro-structure and wear performance of the coatings were affected by the electrodeposition techniques. Pulse current electrodeposited $Ni-Si_3N_4$ composite coatings exhibited higher microhardness, smooth surface, and better wear resistance properties as compared to coatings prepared under DC condition. The $Ni-Si_3N_4$ composite coatings prepared at 50 Hz pulse frequency with 10% duty cycles has shown higher codeposition of nano-particles. Consequently, increased microhardness and less plastic deformations occurred in coatings during sliding wear test. The XRD patterns revealed that the increased pulse frequencies changed the preferred (100) nickel crystallite orientations into mixed (111) and (100) orientations.

Manufacturing and Thermal Process Optimization of Ag-paste for Fabricating High Efficiency Mono-Si Solar Cell (고효율 단결정 Si 태양전지 제작을 위한 은 페이스트의 제조 및 열 공정 최적화)

  • Pi, Ji-Hee;Kim, Sung-Jin;Son, Chang-Rok;Kweon, Soon-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.2
    • /
    • pp.144-150
    • /
    • 2013
  • A New Ag-pastes were developed for integrating the high efficiency mono-Si solar cell. The pastes were the mixture of 84 wt% Ag, 2 wt% glass frit, 11 wt% solvent of buthyl cabitol acetate, and 3 wt% additives. After fabricating the Ag-pastes by using a 3-roll mill, they were coated on a $SiN_x$/n+/p- stacks of a commercial mono-Si solar cell. And the post-thermal process was also optimized by varying the process conditions of peak temperature. The optimized solar cell efficiency on a 6-inch mono-Si wafer was 18.28%, which was the one of the world best performances. It meaned that the newly developed Ag-paste could be adopted to fabricate a commercial bulk Si solar cell.

Low resistivity ohmic Pt/Si/Ti contacts to p-type 4H-SiC (Pt/Si/Ti P형 4H-SiC 오옴성 접합에서 낮은 접촉 저항에 관한 연구)

  • Yang, S.J.;Lee, J.H.;Nho, I.H.;Kim, C.G.;Cho, N.I.;Jung, K.H.;Kim, E.D.;Kim, N.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.521-524
    • /
    • 2001
  • In this letter. we report on the investigation of Ti. Pt/Si/Ti Ohmic contacts to p-type 4H-SiC. The contacts were formed by a 2-step vacuum annealing at $500^{\circ}C$ for 1h. $950^{\circ}C$ for 10 min respectively. The contact resistances were measured using the transmission line model method. which resulted in specific contact resistivities in the $3.5{\times}10^{-3}$ and $6.2{\times}10^{-4}ohm/cm^{2}$, and the physical properties of the contacts were examined using x-ray diffraction. microscopy. AES(auger electron spectroscopy). AES analysis has shown that, at this anneal temperature, there was a intermixing of the Ti and Si. migration of into SiC. Overlayer of Pt had the effect of decreasing the specific contact resistivity and improving the surface morphology of the annealed contact.

  • PDF

Properties of AlN epilayer grown on 6H-SiC substrate by mixed-source HVPE method (6H-SiC 기판 위에 혼합소스 HVPE 방법으로 성장된 AlN 에피층 특성)

  • Park, Jung Hyun;Kim, Kyoung Hwa;Jeon, Injun;Ahn, Hyung Soo;Yang, Min;Yi, Sam Nyung;Cho, Chae Ryong;Kim, Suck-Whan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.3
    • /
    • pp.96-102
    • /
    • 2020
  • In this paper, AlN epilayers on 6H-SiC (0001) substrate are grown by mixed source hydride vapor phase epitaxy (MS-HVPE). AlN epilayer of 0.5 ㎛ thickness was obtained with a growth rate of 5 nm per hour. The surface of AlN epilayer grown on 6H-SiC (0001) substrate was investigated by field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDS). Dislocation density was considered through HR-XRD and related calculations. A fine crystalline AlN epilayer with screw dislocation density of 1.4 × 109 cm-2 and edge dislocation density of 3.8 × 109 cm-2 was confirmed. The AlN epilayer on 6H-SiC (0001) substrate grown by using the mixed source HVPE method could be applied to power devices.

Wear Behavior of Al/SiC Composites Fabricated by Thermal Spray Process (2) - Effect of Applied Load on Wear Behavior - (용사법에 의해 제조된 Al/SiC 복합재료의 마모거동 (2) - 작용하중의 영향 -)

  • Lee, Kwang Jin;Kim, Kyun Tak;Kim, Yeong Sik
    • Tribology and Lubricants
    • /
    • v.29 no.5
    • /
    • pp.298-303
    • /
    • 2013
  • In this work, the effect of applied load on the wear behavior of Al/SiC composites was studied. Al/SiC composites were fabricated following the thermal spray process. Dry sliding wear tests were performed on these composites under four different applied loads, i.e., 5, 10, 15, and 20 N. The wear behaviors of the composites under these applied loads were investigated using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Under applied loads of up to 15 N, the wear rates of Al/SiC composites decreased with an increase in the applied load because of the formation of an adhesion layer on the worn surface. However in the case of an applied load of 20 N, the wear rate was significantly high because the formation and fracture of the adhesion layer were repeated continuously. These results show that the wear behaviors of the tested composites are significantly influenced owing to the applied loads.

전기화학증착법으로 성장된 n-ZnO 나노구조/p-Si 기판의 특성연구

  • Kim, Myeong-Seop;Lee, Hui-Gwan;Yu, Jae-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.102-102
    • /
    • 2011
  • ZnO는 우수한 전기적, 광학적 특성으로 LED, solar cell 등과 같은 광전자소자의 응용을 목적으로 많은 연구가 진행되고 있다. 최근에는 ZnO 동종접합을 만들고자 많은 연구가 진행되고 있으나 p형 ZnO의 낮은 용해성과 높은 불순물에 따른 제조의 어려움으로 현재까지는 n형 ZnO만이 전도성 기판 위에 성장되어 응용되고 있다. 전도성 기판으로서 Si의 경우 낮은 가격, 공정의 용이함 등으로 GaN, SiC 등의 기판에 비하여 많은 응용이 가능하다. 따라서 본 연구에서는 전기화학증착법을 이용하여 p-n 접합을 형성하기 위하여 p형 Si 기판 위에 n형 ZnO 나노구조를 성장하고 그 특성을 분석하였다. 전기화학증착법은 낮은 온도 및 간단한 공정과정으로 빠른 성장 속도를 가지고 나노구조를 효과적으로 성장할 수 있는 방식이다. Seed 층 및 열처리에 따른 n형 ZnO 나노구조의 성장 특성 분석을 위하여 radio frequency (RF) magnetron 스퍼터를 사용하여 ZnO 및 Al doped ZnO (AZO) seed 층을 p형 Si 기판 위에 증착 후 다양한 온도로 열처리를 수행하였다. 질산아연(zinc nitrate)과 HMT가 희석된 용액에 KCl 촉매를 일정량 첨가한 후 다양한 공정 온도, 공정시간 및 질산아연의 몰농도를 변화시켜 n형 ZnO 나노구조를 성장하였다. 성장된 나노구조의 특성은 field emission scanning microscopy (FE-SEM), energy dispersive X-ray (EDX), photoluminescence (PL) 등의 장비를 사용하여 구조적, 광학적 특성을 분석하였다.

  • PDF

Growth and Characteristics of TiN Thin Films by Atomic Layer Epitaxy (Atomic Layer Epitaxy 법에 의한 TiN 박막의 성장과 그 특성)

  • 이종화;김동진
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.581-584
    • /
    • 1998
  • TiN thin films were grown on (100) Si substrate by atomic layer epitaxy at 130 - $240^{\circ}C$ using TEMAT and NH3 as precursors. Reactants were injected into the reactor in sequence of TEMAT precursor vapor pulse, N2 purging gas pulse, NH3 gas pulse and N2 purging gas pulse so that gas-phase reactions could be removed. The films were characterized by means of x-ray diffraction(XRD), 4-point probe, atomic force microscopy(AFM) and auger electron spectroscopy(AES).

  • PDF

A Study on the Residual Stress Analysis of a-Si Thin Film Solar Cell (a-Si 박막형 태양전지의 잔류응력 해석에 관한 연구)

  • Hur, Jang-Wook;Kim, Dong-Wook;Choi, Sung-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.2
    • /
    • pp.14-19
    • /
    • 2013
  • The size and distribution of residual stresses and the effect of the minimum mesh size were investigated by the a-Si thin film solar cell. Attributed to the difference in coefficient of thermal expansion of the a-Si and Ag concentrated residual stresses at the joint interface of dissimilar materials. The ${\sigma}y$ and ${\tau}xy$ didn't appear in the central part, but ${\sigma}x$ existed. However, ${\sigma}x$, ${\sigma}y$ and ${\tau}xy$ appeared in the edge part and concentrated residual stresses at the interface between a-Si and Ag. Minimum mesh size gets smaller, the concentration of ${\sigma}y$ was significantly and existence area was reduced. As a result, the failure of thin film solar cells during the cutting process can be explained by the residual stresses.