• 제목/요약/키워드: $R_m$

검색결과 16,600건 처리시간 0.044초

MaxR(M) AND ZARISKI TOPOLOGY

  • ANSARI-TOROGHY, H.;KEIVANI, S.;OVLYAEE-SARMAZDEH, R.
    • 호남수학학술지
    • /
    • 제28권3호
    • /
    • pp.365-376
    • /
    • 2006
  • Let R be a commutative ring and let M be an R-module. Let X = $Spec_R(M)$ be the prime spectrum of M with Zariski topology. In this paper, by using the topological properties of X, we will obtain some conditions under which $Max_R(M)=Spec_R(M)$.

  • PDF

일반촬영 시 거리역자승법칙에 따른 산란선 감약에 관한 연구 (The Study About Attenuation of Scatter Ray According to Distance Inverse Square Law at General Projection)

  • 전민철;임현수;한만석
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제34권3호
    • /
    • pp.183-188
    • /
    • 2011
  • 거리 역자승 법칙에 관한 엑스선 감약의 정도를 파악하고 이를 산란선 발생에서 적용하여 방사선사의 피폭을 저감할 수 있는 공간을 찾도록 알아보고자 하였다. 관전류량 10 mAs, 관전압 60 kVp, 70 kVp, 81 kVp, 90 kVp, 각각의 거리 60 cm, 120 cm, 180 cm에서 1차 선량을 측정하고, 산란선은 관전류량 20 mAs, 관전압 70 kVp, phantom의 중심부로부터 전면과 후면으로 42.5 cm, 52.5 cm, 62.5 cm 떨어진 곳에서 음 양극(좌우측)으로 각각 10 cm씩 60 cm까지 측정하였고, 거리역자승법칙과 비교하기 위해 전 후방 각각 42.5 cm, 85 cm, 127.5 cm에서 산란선을 측정하였다. 1차선은 거리가 2배에서는 20.52 mR(27.20%), 28.58 mR(25.20%), 38.82 mR(26.32%), 48.20 mR(26.27%)로 감약되고 거리가 3배에서는 7.06 mR(8.91%), 9.90 mR(8.73%), 13.64 mR(9.25%), 16.60 mR(9.05%)로 감약되는 것을 알 수 있었고, 산란선은 전 후방 각각 거리가 2배에서는 0.15 mR(23.09%), 0.15 mR(22.08%) 3배에서는 0.07 mR(10.43%), 0.06 mR(8.83%)로 감약되었다. 산란선의 발생량이 평균적으로 3사분면이 적게 발생하기에 환자를 붙잡고 촬영할 시에는 3사분면의 피사체에서 가능하면 거리를 두고 환자를 잡는 것이 피폭선량을 줄일 수 있다.

CHARACTERIZATION OF WEAKLY COFINITE LOCAL COHOMOLOGY MODULES

  • Moharram Aghapournahr;Marziye Hatamkhani
    • 대한수학회보
    • /
    • 제60권3호
    • /
    • pp.637-647
    • /
    • 2023
  • Let R be a commutative Noetherian ring, 𝔞 an ideal of R, M an arbitrary R-module and X a finite R-module. We prove a characterization for Hi𝔞(M) and Hi𝔞(X, M) to be 𝔞-weakly cofinite for all i, whenever one of the following cases holds: (a) ara(𝔞) ≤ 1, (b) dim R/𝔞 ≤ 1 or (c) dim R ≤ 2. We also prove that, if M is a weakly Laskerian R-module, then Hi𝔞(X, M) is 𝔞-weakly cofinite for all i, whenever dim X ≤ 2 or dim M ≤ 2 (resp. (R, m) a local ring and dim X ≤ 3 or dim M ≤ 3). Let d = dim M < ∞, we prove an equivalent condition for top local cohomology module Hd𝔞(M) to be weakly Artinian.

On the Subsemigroups of a Finite Cyclic Semigroup

  • Dobbs, David Earl;Latham, Brett Kathleen
    • Kyungpook Mathematical Journal
    • /
    • 제54권4호
    • /
    • pp.607-617
    • /
    • 2014
  • Let S = C(r,m), the finite cyclic semigroup with index r and period m. Each subsemigroup of S is cyclic if and only if either r = 1; r = 2; or r = 3 with m odd. For $r{\neq}1$, the maximum value of the minimum number of elements in a (minimal) generating set of a subsemigroup of S is 1 if r = 3 and m is odd; 2 if r = 3 and m is even; (r-1)/2 if r is odd and unequal to 3; and r/2 if r is even. The number of cyclic subsemigroups of S is $r-1+{\tau}(m)$. Formulas are also given for the number of 2-generated subsemigroups of S and the total number of subsemigroups of S. The minimal generating sets of subsemigroups of S are characterized, and the problem of counting them is analyzed.

THE FINITE DIMENSIONAL PRIME RINGS

  • Koh, Kwangil
    • 대한수학회보
    • /
    • 제20권1호
    • /
    • pp.45-49
    • /
    • 1983
  • If R is ring and M is a right (or left) R-module, then M is called a faithful R-module if, for some a in R, x.a=0 for all x.mem.M then a=0. In [4], R.E. Johnson defines that M is a prime module if every non-zero submodule of M is faithful. Let us define that M is of prime type provided that M is faithful if and only if every non-zero submodule is faithful. We call a right (left) ideal I of R is of prime type if R/I is of prime type as a R-module. This is equivalent to the condition that if xRy.subeq.I then either x.mem.I ro y.mem.I (see [5:3:1]). It is easy to see that in case R is a commutative ring then a right or left ideal of a prime type is just a prime ideal. We have defined in [5], that a chain of right ideals of prime type in a ring R is a finite strictly increasing sequence I$_{0}$.contnd.I$_{1}$.contnd....contnd.I$_{n}$; the length of the chain is n. By the right dimension of a ring R, which is denoted by dim, R, we mean the supremum of the length of all chains of right ideals of prime type in R. It is an integer .geq.0 or .inf.. The left dimension of R, which is denoted by dim$_{l}$ R is similarly defined. It was shown in [5], that dim$_{r}$R=0 if and only if dim$_{l}$ R=0 if and only if R modulo the prime radical is a strongly regular ring. By "a strongly regular ring", we mean that for every a in R there is x in R such that axa=a=a$^{2}$x. It was also shown that R is a simple ring if and only if every right ideal is of prime type if and only if every left ideal is of prime type. In case, R is a (right or left) primitive ring then dim$_{r}$R=n if and only if dim$_{l}$ R=n if and only if R.iden.D$_{n+1}$ , n+1 by n+1 matrix ring on a division ring D. in this paper, we establish the following results: (1) If R is prime ring and dim$_{r}$R=n then either R is a righe Ore domain such that every non-zero right ideal of a prime type contains a non-zero minimal prime ideal or the classical ring of ritght quotients is isomorphic to m*m matrix ring over a division ring where m.leq.n+1. (b) If R is prime ring and dim$_{r}$R=n then dim$_{l}$ R=n if dim$_{l}$ R=n if dim$_{l}$ R<.inf. (c) Let R be a principal right and left ideal domain. If dim$_{r}$R=1 then R is an unique factorization domain.TEX>R=1 then R is an unique factorization domain.

  • PDF

A BIFURCATION ANALYSIS FOR RADIALLY SYMMETRIC ENERGY MINIMIZING MAPS ON ANNULUS

  • Chi, Dong-Pyo;Park, Gie-Hyun
    • 대한수학회논문집
    • /
    • 제9권2호
    • /
    • pp.355-359
    • /
    • 1994
  • It would be interesting to know if energy minimizing harmonic maps between manifolds have symmetric properties when the manifolds under consideration have some. In this paper, we consider among others radial symmetry. A radially symmetric manifold M of dimension m is the one with a point, called a pole, and an O(m) action as an isometric rotation with respect to the pole, or more precisely a radially symmetric manifold M has a coordinate on which the metric is of the form $ds_{M}$$^2$ = d$r^2$ + m(r)$^2$d$\theta^2$ for some function m(r) depending only on r. Of course m(0) = 0, m'(0) = 1, and when m(r) = r, (M, $ds_{ M}$/$^2$) is the Euclidean space $R^2$.(omitted)

  • PDF

RINGS AND MODULES CHARACTERIZED BY OPPOSITES OF FP-INJECTIVITY

  • Buyukasik, EngIn;Kafkas-DemIrcI, GIzem
    • 대한수학회보
    • /
    • 제56권2호
    • /
    • pp.439-450
    • /
    • 2019
  • Let R be a ring with unity. Given modules $M_R$ and $_RN$, $M_R$ is said to be absolutely $_RN$-pure if $M{\otimes}N{\rightarrow}L{\otimes}N$ is a monomorphism for every extension $L_R$ of $M_R$. For a module $M_R$, the subpurity domain of $M_R$ is defined to be the collection of all modules $_RN$ such that $M_R$ is absolutely $_RN$-pure. Clearly $M_R$ is absolutely $_RF$-pure for every flat module $_RF$, and that $M_R$ is FP-injective if the subpurity domain of M is the entire class of left modules. As an opposite of FP-injective modules, $M_R$ is said to be a test for flatness by subpurity (or t.f.b.s. for short) if its subpurity domain is as small as possible, namely, consisting of exactly the flat left modules. Every ring has a right t.f.b.s. module. $R_R$ is t.f.b.s. and every finitely generated right ideal is finitely presented if and only if R is right semihereditary. A domain R is $Pr{\ddot{u}}fer$ if and only if R is t.f.b.s. The rings whose simple right modules are t.f.b.s. or injective are completely characterized. Some necessary conditions for the rings whose right modules are t.f.b.s. or injective are obtained.

MODULE-THEORETIC CHARACTERIZATIONS OF KRULL DOMAINS

  • Kim, Hwan-Koo
    • 대한수학회보
    • /
    • 제49권3호
    • /
    • pp.601-608
    • /
    • 2012
  • The following statements for an infra-Krull domain $R$ are shown to be equivalent: (1) $R$ is a Krull domain; (2) for any essentially finite $w$-module $M$ over $R$, the torsion submodule $t(M)$ of $M$ is a direct summand of $M$; (3) for any essentially finite $w$-module $M$ over $R$, $t(M){\cap}pM=pt(M)$, for all maximal $w$-ideal $p$ of $R$; (4) $R$ satisfies the $w$-radical formula; (5) the $R$-module $R{\oplus}R$ satisfies the $w$-radical formula.

PROPERTIES OF INDUCED INVERSE POLYNOMIAL MODULES OVER A SUBMONOID

  • Cho, Eunha;Jeong, Jinsun
    • Korean Journal of Mathematics
    • /
    • 제20권3호
    • /
    • pp.307-314
    • /
    • 2012
  • Let M be a left R-module and R be a ring with unity, and $S=\{0,2,3,4,{\ldots}\}$ be a submonoid. Then $M[x^{-s}]=\{a_0+a_2x^{-2}+a_3x^{-3}+{\cdots}+a_nx^{-n}{\mid}a_i{\in}M\}$ is an $R[x^s]$-module. In this paper we show some properties of $M[x^{-s}]$ as an $R[x^s]$-module. Let $f:M{\rightarrow}N$ be an R-linear map and $\overline{M}[x^{-s}]=\{a_2x^{-2}+a_3x^{-3}+{\cdots}+a_nx^{-n}{\mid}a_i{\in}M\}$ and define $N+\overline{M}[x^{-s}]=\{b_0+a_2x^{-2}+a_3x^{-3}+{\cdots}+a_nx^{-n}{\mid}b_0{\in}N,\;a_i{\in}M}$. Then $N+\overline{M}[x^{-s}]$ is an $R[x^s]$-module. We show that given a short exact sequence $0{\rightarrow}L{\rightarrow}M{\rightarrow}N{\rightarrow}0$ of R-modules, $0{\rightarrow}L{\rightarrow}M[x^{-s}]{\rightarrow}N+\overline{M}[x^{-s}]{\rightarrow}0$ is a short exact sequence of $R[x^s]$-module. Then we show $E_1+\overline{E_0}[x^{-s}]$ is not an injective left $R[x^s]$-module, in general.

VOLUME MEAN OPERATOR AND DIFFERENTIATION RESULTS ASSOCIATED TO ROOT SYSTEMS

  • Rejeb, Chaabane
    • 대한수학회보
    • /
    • 제54권6호
    • /
    • pp.1981-1990
    • /
    • 2017
  • Let R be a root system in $\mathbb{R}^d$ with Coxeter-Weyl group W and let k be a nonnegative multiplicity function on R. The generalized volume mean of a function $f{\in}L^1_{loc}(\mathbb{R}^d,m_k)$, with $m_k$ the measure given by $dmk(x):={\omega}_k(x)dx:=\prod_{{\alpha}{\in}R}{\mid}{\langle}{\alpha},x{\rangle}{\mid}^{k({\alpha})}dx$, is defined by: ${\forall}x{\in}\mathbb{R}^d$, ${\forall}r$ > 0, $M^r_B(f)(x):=\frac{1}{m_k[B(0,r)]}\int_{\mathbb{R}^d}f(y)h_k(r,x,y){\omega}_k(y)dy$, where $h_k(r,x,{\cdot})$ is a compactly supported nonnegative explicit measurable function depending on R and k. In this paper, we prove that for almost every $x{\in}\mathbb{R}^d$, $lim_{r{\rightarrow}0}M^r_B(f)(x)= f(x)$.