• 제목/요약/키워드: $NiMn_2O_4$

검색결과 308건 처리시간 0.029초

이동통신 단말기용 $Mn_{3}O_{4}-NiO-Fe_{2}O_{3}$계 NTC 써미스터의 전기적 특성 (Electric Properties of NTC Thermistor with $Mn_{3}O_{4}-NiO-Fe_{2}O_{3}$ system for Mobile Communication Telephone)

  • 윤중락;김지균;이헌용;이석원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.506-508
    • /
    • 2000
  • Oxide of the form $Mn_{3}O_{4}-NiO-Fe_{2}O_{3}$ present properties that make them useful as multilayer chip NTC thermistor for mobile phone NTC thermistor electric properties of $Mn_{3}O_{4}-NiO-Fe_{2}O_{3}$ system has been measured as a function of temperature and composition. In $Mn_{3}O_{4}-NiO-Fe_{2}O_{3}$ composition, it can be seen that resistivity and B-constant were increased as the ratio of $Mn_{3}O_{4}/F_{2}O_{3}$ and $Mn_{3}O_{4}$/NiO was increased. In particular, resistance change ratio (${\Delta}R$), the important factor for reliability varied within ${\pm}1%$, indicating the compositions of these products could be available for mobile phone.

  • PDF

5V급 고전압 양극 LiNi0.5Mn1.5O4 Spinel의 제조와 전기화학적 특성에 관한 연구 (Electrochemical Characteristics of LiNi0.5Mn1.5O4 Spinel as 5 V Class Cathode Material for Lithium Secondary Batteries)

  • 전상훈;오시형;이병조;조원일;조병원
    • 전기화학회지
    • /
    • 제8권4호
    • /
    • pp.172-176
    • /
    • 2005
  • 차세대 5V급 양극활물질로 각광받고 있는 $LiNi_{0.5}Mn_{1.5}O_4$는 기존의 $LiMn_2O_4$ spinel 물질의 $Mn^{3+}$$Ni^{2+}$으로 치환하여 5V 영역에서 $Ni^{2+}/Ni^{4+}$ 산화/환원 반응이 가능하게 한 물질이다. 기존의 $LiMn_2O_4$는 낮은 초기 용량과 충 방전에 따른 빠른 용량감소를 보이는 단점을 가지고 있어 이 문제를 극복하기 위해 Mn의 일부를 다른 금속으로 치환하여 $LiM_yMn_{2-y}O_4$ (M=Cr, Al, Ni, Fe, Co, Cu, Ca)을 만드는 방법이 활발히 연구되고 있다. 본 연구에서는 기계 화학적 합성법을 이용하여 합성한 $LiNi_{0.5}Mn_{1.5}O_4$의 전기화학적 특성에 대해 연구하였다. 이 물질은 기존의 $LiMn_2O_4$보다 에너지 밀도가 높으며 저가 및 친환경성 등으로 앞으로 HEV 등에서 그 활용성이 크게 기대된다. 볼밀을 이용하여 여러가지 조건(출발물질 조건, 볼밀조건, 열처리조건 등)에서 $LiNi_{0.5}Mn_{1.5}O_4$을 합성한 결과 기계화학적 방법으로는 $Ni^{2+}$$Mn^{3+}$를 완전히 치환하지 못하여 $4.0{\sim}4.1V$의 전압에서 $Mn^{3+}/Mn^{4+}$의 산화/환원과 관련된 peak가 발생하였다. Ni 원료 물질로써 수산화 물질을 사용하고 열처리 온도를 $800^{\circ}C$로 하였을 때 최상의 성능을 나타내었다.

Ni-Mn 산화물 NTC 서미스터의 미세구조와 전기적 특성에 미치는 ZrO2첨가의 효과 (Effect of ZrO2 Addition on the Microstructure and Electrical Properties of Ni-Mn Oxide NTC Thermistors)

  • 박경순;방대영;윤성진;최병현
    • 한국세라믹학회지
    • /
    • 제40권1호
    • /
    • pp.11-17
    • /
    • 2003
  • Ni-Mn 산화물 NTC 서미스터의 미세구조와 전기적 특성에 미치는 Zr $O_2$ 첨가의 효과를 연구하였다. Zr $O_2$를 포함하는 Ni-Mn-Zr 산화물 소결체의 주요 상은 입방정 스피넬 구조를 가지는 NiO-Mn$_3$ $O_4$-Zr $O_2$의 고용체와 정방정 결정구조를 가지는 Zr $O_2$ 상이였다. Zr $O_2$의 첨가량이 증가함에 따라 Ni-Mn-Zr산화물의 고용체를 형성하지 못하고 생성된 Zr $O_2$의 양이 증가하였다. NiO-Mn$_3$ $O_4$-Zr $O_2$ NTC 서미스터에 있어서 절대온도 역수(l/T)에 대한 로그 비저항(log $ho$)은 직선적인 관계가 있었고, 비저항, B$_{140}$320/정수 및 활성화 에너지는 Zr $O_2$ 함량이 증가함에 따라 크게 증가하였다.

Nickel Substitution Effects on Nano-sized Co, Mn and MnZn Ferrites Synthesized by Sol-gel Method

  • Choi, Won-Ok;Kwon, Woo Hyun;Chae, Kwang Pyo;Lee, Young Bae
    • Journal of Magnetics
    • /
    • 제21권1호
    • /
    • pp.40-45
    • /
    • 2016
  • Nickel substituted nano-sized ferrite powders, $Co_{1-x}Ni_xFe_2O_4$, $Mn_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ($0.0{\leq}x{\leq}0.2$), were fabricated using a sol-gel method, and their crystallographic and magnetic properties were subsequently compared. The lattice constants decreased as quantity of nickel substitution increased, while the particle size decreased in $Co_{1-x}Ni_xFe_2O_4$ ferrite but increased for the $Mn_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ferrites. For the $Co_{1-x}Ni_xFe_2O_4$ and $Mn_{1-x}Ni_xFe_2O_4$ ($0.0{\leq}x{\leq}0.2$) ferrite powders, the $M{\ddot{o}}ssbauer$ spectra could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. However, the $M{\ddot{o}}ssbauer$ spectrum of $Mn_{0.8}Zn_{0.1}Ni_{0.1}Fe_2O_4$ consisted of two Zeeman sextets and one single quadrupole doublet due to the ferrimagnetic and paramagnetic behavior. The area ratio of the $M{\ddot{o}}ssbauer$ spectra could be used to determine the cation distribution equation, and we also explain the variation in the $M{\ddot{o}}ssbauer$ parameters by using this cation distribution equation, the superexchange interaction and the particle size. The saturation magnetization decreased in the $Co_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ferrites but increased in the $Mn_{1-x}Ni_xFe_2O_4$ ferrite with nickel substitution. The coercivity decreased in the $Co_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ferrites but increased in the $Mn_{1-x}Ni_xFe_2O_4$ ferrite with nickel substitution. These variations could thus be explained by using the site distribution equations, particle sizes and spin magnetic moments of the substituted ions.

전이금속 치환 리튬이온 이차전지 정극 Li($Mn_{1-\delta}$$M_{\delta}$)$_2$$O_4$의 전기적 특성 (Electrical Characteristics of Cathode Li($Mn_{1-\delta}$$M_{\delta}$)$_2$$O_4$ Substituted by Transition Metals in Li-Ion Secondary Batteries)

  • 박재홍;김정식;유광수
    • 한국세라믹학회지
    • /
    • 제37권5호
    • /
    • pp.466-472
    • /
    • 2000
  • As cathode materials of LiMn2O4-based lithium-ion secondary batteries, Li(Mn1-$\delta$M$\delta$)2O4 (M=Ni and Co, $\delta$=0, 0.05, 0.1 and 0.2) materials which Co and Ni are substituted for Mn, were syntehsized by the solid state reaction at 80$0^{\circ}C$ for 48 hours. No second phases were formed in Li(Mn1-$\delta$M$\delta$)2O4 system with substitution of Co. However, substitution of Ni caued to form a second phase of NiO when its composition exceeded over 0.2 of $\delta$ in Li(Mn1-$\delta$M$\delta$)2O4. As the results of charging-discharging test, the maximum capacity of Li(Mn1-$\delta$M$\delta$)2O4 appeared in $\delta$=0.1 for both Co and Ni. Also, Li(Mn1-$\delta$M$\delta$)2O4 electrode showed higher capacity and better cycle performance than LiMn2O4.

  • PDF

스피넬 LiNi0.5Mn1.5O4 양극 활물질의 구조 안정성 연구 (The Studies of Structural Stability of LiNi0.5Mn1.5O4 Spinel)

  • 박성빈;김율구;이완규;조원일;장호
    • 대한금속재료학회지
    • /
    • 제46권3호
    • /
    • pp.174-181
    • /
    • 2008
  • The stability of the cathode materials for Li secondary battery is an important factor for its cyclability. The present paper focuses on the structural stability of $LiNi_{0.5}Mn_{1.5}O_4$ during lithiation/delithiation of Li ions and compared to that of $LiMn_{2}O_4$. $LiMn_{2}O_4$ and $LiNi_{0.5}Mn_{1.5}O_4$ powders are synthesized using a solgel method and their structural and electrochemical properties are investigated by XRD, SEM, and charge-discharge tests. $Li_xMn_2O_4$ and $Li_xNi_{0.5}Mn_{1.5}O_4$(x = 0.9,0.5,0.1) specimens are obtained after charge/discharge tests by controlling the cut-off voltage for XRD and TEM investigation. The charge-discharge tests shows that initial capacity of $LiNi_{0.5}Mn_{1.5}O_4$ is 125 mAh/g and that of LiMn2O4 is around 100 mAh/g. The capacity of $LiNi_{0.5}Mn_{1.5}O_4$ is maintained 95% of its initial capacity whereas the capacity of $LiMn_{2}O_4$ is maintained 65% of its initial capacity.

착체중합법을 이용한 LiMn1.5Ni0.5O4 분말합성 및 특성평가 (Synthesis and characterization of LiMn1.5Ni0.5O4 powders using polymerization complex method)

  • 신재호;김진호;황해진;김응수;조우석
    • 한국결정성장학회지
    • /
    • 제22권4호
    • /
    • pp.194-199
    • /
    • 2012
  • 스피넬 구조로 이루어진 $LiMn_2O_4$에서 Mn의 일부분을 Ni로 치환한 $LiMn_{1.5}Ni_{0.5}O_4$은 4.7 V 전압 영역에서 높은 방전 용량 및 우수한 충 방전 사이클 특성을 가진다. 본 연구에서는 착체중합법을 이용하여 $LiMn_{1.5}Ni_{0.5}O_4$를 합성하였다. Citric acid : metal의 몰비(5 : 1, 10 : 1, 15 : 1, 30 : 1) 및 하소 온도($500{\sim}900^{\circ}C$) 변화에 따라 합성된 $LiMn_{1.5}Ni_{0.5}O_4$ 분말의 특성을 조사하였다. 합성된 분말의 XRD 분석을 통해 저온($500^{\circ}C$) 및 고온($900^{\circ}C$) 영역에서 모두 단일상인 $LiMn_{1.5}Ni_{0.5}O_4$ 결정상을 관찰할 수 있었고, 하소 온도가 증가함에 따라 결정화 및 결정자 크기도 함께 증가하였다. 합성된 $LiMn_{1.5}Ni_{0.5}O_4$ 분말의 형상 및 비표면적 분석 결과, 저온영역에서는 CA 몰비가 증가할수록 입자사이즈는 감소하고 비표면적은 증가하는 것을 확인할 수 있었다. 반면에 고온영역에서는 온도 증가에 따른 입자 성장에너지가 CA 몰비 증가에 따른 입자 사이즈 감소 및 비표면적 증가 효과를 감소시키는 것을 관찰하였다.

A Study on the Recovery of Li2CO3 from Cathode Active Material NCM(LiNiCoMnO2) of Spent Lithium Ion Batteries

  • Wang, Jei-Pil;Pyo, Jae-Jung;Ahn, Se-Ho;Choi, Dong-Hyeon;Lee, Byeong-Woo;Lee, Dong-Won
    • 한국분말재료학회지
    • /
    • 제25권4호
    • /
    • pp.296-301
    • /
    • 2018
  • In this study, an experiment is performed to recover the Li in $Li_2CO_3$ phase from the cathode active material NMC ($LiNiCoMnO_2$) in waste lithium ion batteries. Firstly, carbonation is performed to convert the LiNiO, LiCoO, and $Li_2MnO_3$ phases within the powder to $Li_2CO_3$ and NiO, CoO, and MnO. The carbonation for phase separation proceeds at a temperature range of $600^{\circ}C{\sim}800^{\circ}C$ in a $CO_2$ gas (300 cc/min) atmosphere. At $600{\sim}700^{\circ}C$, $Li_2CO_3$ and NiO, CoO, and MnO are not completely separated, while Li and other metallic compounds remain. At $800^{\circ}C$, we can confirm that LiNiO, LiCoO, and $Li_2MnO_3$ phases are separated into $Li_2CO_3$ and NiO, CoO, and MnO phases. After completing the phase separation, by using the solubility difference of $Li_2CO_3$ and NiO, CoO, and MnO, we set the ratio of solution (distilled water) to powder after carbonation as 30:1. Subsequently, water leaching is carried out. Then, the $Li_2CO_3$ within the solution melts and concentrates, while NiO, MnO, and CoO phases remain after filtering. Thus, $Li_2CO_3$ can be recovered.

Mn-Co-Ni 산화물계 NTC 서미스터의 조성에 따른 전기적 특성과 경시변화 (The Electrical Properties and Aging Effects on the Composition of Mn-Co-Ni NTC Thermistors)

  • 권정범;정용근;엄우식;송준광;유광수
    • 한국세라믹학회지
    • /
    • 제38권12호
    • /
    • pp.1174-1179
    • /
    • 2001
  • 상온용 NTC 서미스터로는 주로 Mn-Co-Ni 산화물계가 사용된다. 본 연구에서는 Mn-Co-Ni 산화물게 분말을 이용하여 상온에서 가압성형하여 125$0^{\circ}C$에서 3시간 동안 소결한 후, 100$0^{\circ}C$에서 3시간 유지하여 소결체를 제작하였다. 다양한 조성으로 제조된 서미스터의 전기적 특성을 평가한 결과, MCN622(Mn$_3$O$_4$60wt%, 20wt%, NiO 20wt%)는 가장 낮은 비저항과 상대적으로 높은 B 정수를 나타내었고, MCN721(Mn$_3$O$_4$70wt%, Co$_3$O$_4$20wt%, NiO 10 wt%)는 다는 조성들에 비해 현저히 높은 비저항값을 나타내었다. 또한, 각 조성들의 경시변화는 $\pm$2%이내로서 비교적 안정한 특성을 나타냈다.

  • PDF

리튬이차전지 양극활물질용 LiMn2O4-LiNi1/3Mn1/3Co1/3O2의 전기화학적 특성 (Electrochemical Properties of LiMn2O4-LiNi1/3Mn1/3Co1/3O2 Cathode Materials in Lithium Secondary Batteries)

  • 공명철;;구할본
    • 한국전기전자재료학회논문지
    • /
    • 제29권5호
    • /
    • pp.298-302
    • /
    • 2016
  • In this work, $LiMn_2O_4$ and $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ cathode materials are mixed by some specific ratios to enhance the practical capacity, energy density and cycle performance of battery. At present, the most used cathode material in lithium ion batteries for EVs is spinel structure-type $LiMn_2O_4$. $LiMn_2O_4$ has advantages of high average voltage, excellent safety, environmental friendliness, and low cost. However, due to the low rechargeable capacity (120 mAh/g), it can not meet the requirement of high energy density for the EVs, resulting in limiting its development. The battery of $LiMn_2O_4-LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ (50:50 wt%) mixed cathode delivers a energy density of 483.5 mWh/g at a current rate of 1.0 C. The accumulated capacity from $1^{st}$ to 150th cycles was 18.1 Ah/g when the battery is cycled at a current rate of 1.0 C in voltage range of 3.2~4.3 V.