Browse > Article
http://dx.doi.org/10.6111/JKCGCT.2012.22.4.194

Synthesis and characterization of LiMn1.5Ni0.5O4 powders using polymerization complex method  

Sin, Jae-Ho (KICET Icheon Branch)
Kim, Jin-Ho (KICET Icheon Branch)
Hwang, Hae-Jin (Department of Ceramic Enginnering In-Ha University)
Kim, Ung-Soo (KICET Icheon Branch)
Cho, Woo-Seok (KICET Icheon Branch)
Abstract
The $LiMn_{1.5}Ni_{0.5}O_4$, substituting a part of Mn with Ni in the $LiMn_2O_4$, the spinel structure has good charge-discharge cycle stability and high discharge capacity at 4.7 V. In this study $LiMn_{1.5}Ni_{0.5}O_4$ powders were synthesized by polymerization complex method. The effect on the characteristics of synthesized $LiMn_{1.5}Ni_{0.5}O_4$ powders was studied with citric acid (CA) : metal ion (ME) molar ratio (5 : 1, 10 : 1, 15 : 1, 30 : 1) and calcination temperature ($500{\sim}900^{\circ}C$). Single phase of $LiMn_{1.5}Ni_{0.5}O_4$ was observed from XRD analysis on the powders calcined at low ($500^{\circ}C$) and high temperatures ($900^{\circ}C$). The crystalline size and crystallinity increased with calcination temperature. At low calcination temperature the particle size decreased and specific surface area increased as the CA molar ratio increased. On the other hand, high particle growth rate at high calcination temperature interfered the particle size reduction and specific surface area increase induced by the increase of CA molar ratio.
Keywords
Spinel; $LiMn_2O_4$; $LiMn_{1.5}Ni_{0.5}O_4$; Polymerization complex method; Citric acid;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 A. Hitoshi, N. Koji, O. Nobuo and O. Takashi, "Effect of particle morphology on electrochemical property of $LiMn_{2}O_{4}$", J. Ceram. Soc. (Japan) 109 (2001) 506.   DOI
2 H. Huang, C.H. Chen, R.C. Perego, E.M. Kelder, L. Chen and J. Schoonman, "Electrochemical characterization of commercial lithium manganese oxide powders", Solid State Ionics 127 (2000) 31.   DOI   ScienceOn
3 E. Bulut, "Effect of calcination temperature on synthesis of $LiMn_{2}O_{4}$ cathod active nanoparticles for rechargeable Li-Ion batteries", Adv. Sci. Engin. Med. 3 (2011) 67.   DOI   ScienceOn
4 Y. Xia, N. Kumada and M. Yoshio, "Enhancing the elevated temperature performance of Li/$LiMn_{2}O_{4}$ cells by reducing $LiMn_{2}O_{4}$ surface area", J. Power Sources 90 (2000) 135.   DOI   ScienceOn
5 G.T.K. Fey, C.Z. Lu and T.P. Kumar, "Preparation and electrochemical properties of high-voltage cathode materials, $LiM_{y}Ni_{0.5y}Mn_{1.5}O_{4}$ (M 1/4 Fe, Cu, Al, Mg; y 1/4 0:0-0.4)", J. Power Sources 115 (2003) 332.   DOI   ScienceOn
6 L. Hernan, J. Morales, L. Sanchez and J. Santos, "Use of Li-M-Mn-O [M=Co, Cr, Ti] spinels prepared by a sol-gel method as cathodes in high-voltage lithium batteries", Solid State Ionics 118 (1999) 179.   DOI   ScienceOn
7 Q. Zhong, A. Bonakdarpour, M. Zhang, Y. Gao and J.R. Dahn, "Synthesis and electrochemistry of $LiNiMn_{2-x}O_{4}$", J. Eletrochem. Soc. 144 (1997) 205.   DOI
8 K. Amine, H. Tukamoto, H. Yasuda and Y. Fujita, "Preparation and electrochemical investigation of $LiMn_{2-x}Me_{2-x}O_{4}$(Me: Ni, Fe, and x = 0.5, 1) cathode materials for secondary lithium batteries", J. Power Sources 68 (1997) 604.   DOI   ScienceOn
9 H.U. Kim, S.D. Youn, J.C. Lee, H.R. Park, C.G. Park and M.Y. Song, "Electrochemical properties of $LiNi_{1-y}In_{y}O_{2}$ synthesized by milling and solid-state reaction method", Trans. of the Korean Hydrogen and New Energy Society 17 (2006) 117.   과학기술학회마을
10 S.M. Kim, S.H. Kim, J.H. Kim, U.S. Kim, H.J. Hwang and W.S. Cho, "Synthesis and electrochemical properties of $LiFePO_{4}$ by citrate process", Trans. of the Korean Hydrogen and New Energy Society 22 (2011) 728.   과학기술학회마을
11 S. Yang, P.Y. Zavalij and M.S. Whittiugham, "Hydrothermal synthesis of lithium iron phosphate cathodes", Electrochem. Commun. 3 (2001) 505.   DOI   ScienceOn
12 M.A.E. Sanchez, G.E.S. Brito, M.C.A. Fantini, G.F. Goya and J.R. Matos, "Synthesis and characterization of $LiFePO_{4}$ prepared by sol-gel technique", Solid State Ionics 177 (2006) 497.   DOI   ScienceOn
13 J.R. Dahn, U. von Sacken and C.A. Michel, "Structure and electrochemistry of $Li_{1{\pm}y}NiO_{2}$ and a new $Li_{2}NiO_{2}$ phase with the $Ni(OH)_{2}$ structure," Solid State Ionics 44 (1990) 87.   DOI   ScienceOn
14 M.P. Pechini, United States Patent, 3, 330, 676, July (1967).
15 R.J. Gummow, A. de Kock and M.M. Thackeray, "Improved capacity retention in rechargeable 4 V lithium manganese oxide (spinel) cells", Solid State Ionics 69 (1994) 59.   DOI   ScienceOn
16 M. Lanz, C. Kormann, H. Steininger, G. Heil, O. Haas and P. Novak, "Large-agglomerate-size lithium manganese oxide spinel with high rate capability for lithiumion batteries", J. Eletrochem. Soc. 147 (2000) 3997.   DOI   ScienceOn
17 H.M. Wu, J.P. Tu, Y.F. Yuan, Y. Li, X.B. Zhao and G.S. Cao, "Electrochemical and ex situ XRD studies of a $LiMn_{1.5}Ni_{0.5}O_{4}$ high-voltage cathode material", Electrochimica Acta 50 (2005) 4104.   DOI   ScienceOn
18 X. Wu and S.B. Kim, "Improvement of electrochemical properties of $LiMn_{1.5}Ni_{0.5}O_{4}$ spinel", J. Power Sources 109 (2002) 53.   DOI   ScienceOn