Browse > Article
http://dx.doi.org/10.4313/JKEM.2016.29.5.298

Electrochemical Properties of LiMn2O4-LiNi1/3Mn1/3Co1/3O2 Cathode Materials in Lithium Secondary Batteries  

Kong, Ming Zhe (Department of Electrical Engineering, Chonnam National University)
Nguyen, Van Hiep (Research Institute of Wonkwang Electric Power Corporation)
Gu, Hal-Bon (Department of Electrical Engineering, Chonnam National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.29, no.5, 2016 , pp. 298-302 More about this Journal
Abstract
In this work, $LiMn_2O_4$ and $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ cathode materials are mixed by some specific ratios to enhance the practical capacity, energy density and cycle performance of battery. At present, the most used cathode material in lithium ion batteries for EVs is spinel structure-type $LiMn_2O_4$. $LiMn_2O_4$ has advantages of high average voltage, excellent safety, environmental friendliness, and low cost. However, due to the low rechargeable capacity (120 mAh/g), it can not meet the requirement of high energy density for the EVs, resulting in limiting its development. The battery of $LiMn_2O_4-LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ (50:50 wt%) mixed cathode delivers a energy density of 483.5 mWh/g at a current rate of 1.0 C. The accumulated capacity from $1^{st}$ to 150th cycles was 18.1 Ah/g when the battery is cycled at a current rate of 1.0 C in voltage range of 3.2~4.3 V.
Keywords
Capacity; Energy density; $LiMn_2O_4-LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ (50:50 wt%); Accumulated capacity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. H. Waller, J. Power Sources, 306, 162 (2016). [DOI: http://dx.doi.org/10.1016/j.jpowsour.2015.11.114]   DOI
2 T.Y.S.P. Putra, M. Yonemura, S. Torii, T. Ishigaki, and T. Kamiyama, Solid State Ionics, 262, 83 (2014). [DOI: http://dx.doi.org/10.1016/j.ssi.2013.10.049]   DOI
3 Y. Nishi, J. Power Sources, 100, 101 (2001). [DOI: http://dx.doi.org/10.1016/S0378-7753(01)00887-4]   DOI
4 M. M. Thackeray, Solid State Chemistry, 25, 1 (1997). [DOI: http://dx.doi.org/10.1016/S0079-6786(97)81003-5]   DOI
5 K. Du, G. R. Hu, Z. D. Peng, and L. Qi, Electrochemica Acta, 55, 1733 (2010). [DOI: http://dx.doi.org/10.1016/j.electacta.2009.10.058]   DOI
6 Y. J. Liu, X. H. Li, H. J. Guo, Z. X. Wang, Q. Y. Hu, W. J. Peng, and Y. Yang, J. Power Sources, 189, 721 (2009). [DOI: http://dx.doi.org/10.1016/j.jpowsour.2008.08.044]   DOI
7 H. S. Kim, M. Z. Kong, K. T. Kim, I. J. Kim, and H. B. Gu, J. Power Sources, 171, 917 (2007). [DOI: http://dx.doi.org/10.1016/j.jpowsour.2007.06.028]   DOI
8 N. Yabuuchi and T. Ohzuku, J. Power Sources, 119, 171 (2003). [DOI: http://dx.doi.org/10.1016/S0378-7753(03)00173-3]
9 H. J. Guo, R. F. Liang, X. H. Li, X. M. Zhang, Z. X. Wang, W. J. Peng, and Z. Wang, Trans. Nonferrous Met. Soc. China, 17, 1307 (2007). [DOI: http://dx.doi.org/10.1016/S1003-6326(07)60267-2]   DOI
10 M. Z. Kong, H. S. Kim, and K. T. Kim, Proc. of KIEEME Autumn Conference, 19, 214 (2006).
11 H. S. Kim, S. I. Kim, and W. S. Kim, Electrochemica Acta, 52, 1457 (2006). [DOI: http://dx.doi.org/10.1016/j.electacta.2006.02.045]   DOI