Browse > Article
http://dx.doi.org/10.4283/JMAG.2016.21.1.040

Nickel Substitution Effects on Nano-sized Co, Mn and MnZn Ferrites Synthesized by Sol-gel Method  

Choi, Won-Ok (Department of Nano Science and Mechanical Engineering, Nanotechnology Research Center, Konkuk University)
Kwon, Woo Hyun (Department of Nano Science and Mechanical Engineering, Nanotechnology Research Center, Konkuk University)
Chae, Kwang Pyo (Department of Nano Science and Mechanical Engineering, Nanotechnology Research Center, Konkuk University)
Lee, Young Bae (Department of Physics, Hanzhong University)
Publication Information
Abstract
Nickel substituted nano-sized ferrite powders, $Co_{1-x}Ni_xFe_2O_4$, $Mn_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ($0.0{\leq}x{\leq}0.2$), were fabricated using a sol-gel method, and their crystallographic and magnetic properties were subsequently compared. The lattice constants decreased as quantity of nickel substitution increased, while the particle size decreased in $Co_{1-x}Ni_xFe_2O_4$ ferrite but increased for the $Mn_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ferrites. For the $Co_{1-x}Ni_xFe_2O_4$ and $Mn_{1-x}Ni_xFe_2O_4$ ($0.0{\leq}x{\leq}0.2$) ferrite powders, the $M{\ddot{o}}ssbauer$ spectra could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. However, the $M{\ddot{o}}ssbauer$ spectrum of $Mn_{0.8}Zn_{0.1}Ni_{0.1}Fe_2O_4$ consisted of two Zeeman sextets and one single quadrupole doublet due to the ferrimagnetic and paramagnetic behavior. The area ratio of the $M{\ddot{o}}ssbauer$ spectra could be used to determine the cation distribution equation, and we also explain the variation in the $M{\ddot{o}}ssbauer$ parameters by using this cation distribution equation, the superexchange interaction and the particle size. The saturation magnetization decreased in the $Co_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ferrites but increased in the $Mn_{1-x}Ni_xFe_2O_4$ ferrite with nickel substitution. The coercivity decreased in the $Co_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ferrites but increased in the $Mn_{1-x}Ni_xFe_2O_4$ ferrite with nickel substitution. These variations could thus be explained by using the site distribution equations, particle sizes and spin magnetic moments of the substituted ions.
Keywords
nickel substituted ferrite; sol-gel method; $M{\ddot{o}}ssbauer$ spectroscopy; saturation magnetization; coercivity;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 N. N. Greenwood and T. C. Gibb, Mossbauer spectroscopy, Chapman and Hall Ltd. London (1971), p. 261-266.
2 V. Blasko, V. Petkov, V. Rusanov, Ll. M. Martinez, B. Martinez, J. S. Munoz and M. Mikhove, J. Magn. Magn. Mater. 162, 331 (1996).   DOI
3 T. Tsutaoka, J. Appl. Phys. 93, 2789 (2003).   DOI
4 A. S. Albaguergye, J. D. Ardisson and W. A. A. Macedo, J. Appl. Phys. 87, 4352 (2000).   DOI
5 K. Oda, T. Yoshio, K. Hirata, K. O. Oka and K. Takabashi, J. Jpn. Soc., Powder Powder Metal. 29, 170 (1982).   DOI
6 V. K. Sankaranarayana, Q. A. Pankhurst, D. P. E. Dickson and C. E. Johson, J. Magn. Magn. Mater. 125, 199 (1993).   DOI
7 J. G. Lee, J. Y. Park and C. S. Kim, J. Mater. Sci. 53, 3965 (1998).
8 B. D. Cullity, Elements of X-Ray Diffraction, Addition Wesley Co. (1978), p. 102.
9 J. Y. Kang, W. H. Kwon, S. W. Lee, B. S. Kang and K. P. Chae, J. Korean Phys. Soc. 60, 795 (2012).   DOI
10 P. Didukh, J. M. Grenecheb, A.-S. Waniewska, P. C. Fannin and L. Casas, J. Magn. Magn. Mater. 613, 242 (2002).
11 C. V.-Aarca, P. Lavela and J. L. Tirado, J. Power Sources 196, 6978 (2011).   DOI
12 R. K. Datta and B. Roy, J. Amer. Coram. Soc. 50, 578 (1967).   DOI
13 M. Z. Schmalzrifd, J. Phys. Chem. 28, 203 (1961).
14 W. O. Choi, W. H. Kwon, J. G. Lee, B. S. Kang and K. P. Chae, J. Korean Phys. Soc. 61, 1812 (2012).   DOI
15 A. S. Albuquerque, J. D. Ardisson and W. A. A. Macedo, J. Appl. Phys. 87, 4352 (2000).   DOI
16 W. H. Kwon, J. G. Lee, Y. B. Lee and K. P. Chae, J. Magn. 16, 1 (2011).   DOI
17 M. K. Shobana, S. Sankar and V. Rayendran, Material Chem. Phys. 113, 10 (2009).   DOI
18 W. H. Kwon, J. Y. Kang, J. G. Lee, S. W. Lee and K. P. Chae, J. Magn. 15, 159 (2010).   DOI
19 A. Goldman, Modern Ferrite Technology, Van Nostrand Reinhold, New York (1990), p. 217.