The Studies of Structural Stability of LiNi0.5Mn1.5O4 Spinel

스피넬 LiNi0.5Mn1.5O4 양극 활물질의 구조 안정성 연구

  • Park, Sung-Bin (Dept. of Materials Science & Engineering College of Engineering, Korea University) ;
  • Kim, Yool-Koo (Dept. of Materials Science & Engineering College of Engineering, Korea University) ;
  • Lee, Wan-Gyu (Dept. of Materials Science & Engineering College of Engineering, Korea University) ;
  • Cho, Won-Il (Eco-Nano Research Center, Korea Institute of Science and Technology) ;
  • Jang, Ho (Dept. of Materials Science & Engineering College of Engineering, Korea University)
  • 박성빈 (고려대학교 신소재공학부) ;
  • 김율구 (고려대학교 신소재공학부) ;
  • 이완규 (고려대학교 신소재공학부) ;
  • 조원일 (한국과학기술 연구원) ;
  • 장호 (고려대학교 신소재공학부)
  • Received : 2007.10.17
  • Published : 2008.03.22

Abstract

The stability of the cathode materials for Li secondary battery is an important factor for its cyclability. The present paper focuses on the structural stability of $LiNi_{0.5}Mn_{1.5}O_4$ during lithiation/delithiation of Li ions and compared to that of $LiMn_{2}O_4$. $LiMn_{2}O_4$ and $LiNi_{0.5}Mn_{1.5}O_4$ powders are synthesized using a solgel method and their structural and electrochemical properties are investigated by XRD, SEM, and charge-discharge tests. $Li_xMn_2O_4$ and $Li_xNi_{0.5}Mn_{1.5}O_4$(x = 0.9,0.5,0.1) specimens are obtained after charge/discharge tests by controlling the cut-off voltage for XRD and TEM investigation. The charge-discharge tests shows that initial capacity of $LiNi_{0.5}Mn_{1.5}O_4$ is 125 mAh/g and that of LiMn2O4 is around 100 mAh/g. The capacity of $LiNi_{0.5}Mn_{1.5}O_4$ is maintained 95% of its initial capacity whereas the capacity of $LiMn_{2}O_4$ is maintained 65% of its initial capacity.

Keywords

References

  1. Gholam-Abbas Nazri, Lithium Batteries : Science and Technology, p.315, Kluwer Academic Publishers (2003)
  2. Zhaohui Chen, Zhonghua Lu, and J. R. Dahn, J. The Electrochemical Society 149, A1604 (2002) https://doi.org/10.1149/1.1519850
  3. Z. S. Peng, C. R. Wan, and C.Y. Jiang, J. Power Sources 72, 215 (1998) https://doi.org/10.1016/S0378-7753(97)02689-X
  4. W. Li, J.N. Reimers and J.R. Dahn, Solid State Ionics 69, 123 (1993)
  5. E. Chappel, M.D. Nunez-Regueiro, G. Chouteau, C. Darie, C. Delmas, V. Bianchi, D. Caurant, and N. Baffier, Physica B 294, 124 (2001) https://doi.org/10.1016/S0921-4526(00)00623-2
  6. Yoshio Masaki, and Kim Sang-pill, Lithium-ion secondary 2nd edition, p.40, Dasom (2002)
  7. J. S. Kim, C. S. Kim, and S. K. Joo, J. Kor. Inst. Met. & Mater., 38, 728 (2000)
  8. J. M. Tarascon, E. Wang, F. K. Shokoohi, W. R. McKinnon, and S. Colson, J. Electrochem. Soc. 138, 2859 (1991) https://doi.org/10.1149/1.2085330
  9. Y. Xia, H. Takeshige, H. Noguchi, and M. Yoshio, J. Power Sources 56, 61 (1995)
  10. D. Guyomond, and J. M. Tarascon, Solid State Ionics 69, 222 (1994) https://doi.org/10.1016/0167-2738(94)90412-X
  11. A. D. Robertson, S. H. Lu, W. F. Averill, and W. F. Howard. Jr, J. Electrochem. Soc. 144, 3500 (1997) https://doi.org/10.1149/1.1838040
  12. A. D. Robertson, S. H. Lu, W. F. Averill, and W. F. Howard. Jr, J. Electrochem. Soc. 144, 3505 (1997) https://doi.org/10.1149/1.1838041
  13. K. Amine, H. Tukamoto, H. Yasuda, and Y. Fujia, J. Electrochem. Soc. 143, 1607 (1996) https://doi.org/10.1149/1.1836686
  14. Qiming Zhong, Arman Bonakdarpour, Meijie Zhang, Yuan Gao, and J. R. Dahn, J. Electrochem. Soc. 144, 205 (1997) https://doi.org/10.1149/1.1837386
  15. H. Shigemura, H. Sakaebe, H. Kageyama, H. Kobayashi, A. R. West, R. Kanno, S. Morimoto, S. Morimoto, S. Nasu, and M. Tabuchi, J. Electrochem. Soc. 148, A730 (2001) https://doi.org/10.1149/1.1377593
  16. Yair Ein-Eli, W. F. Howard, Jr, and Sharon H. Lu, Sanjeer MukerJee and James and McBreen, John T. Vaughey, and Michael M. Thackeray, J. Electrochem. Soc. 145, 1238 (1998) https://doi.org/10.1149/1.1838445
  17. P. Arora, B.N. Popov, and R. E. White, J. Electrochem. Soc. 145, 807 (1998) https://doi.org/10.1149/1.1838349
  18. T. Ohzuku, S. Takeda, and M. Iwanaga, Journal of Power Sources 81-82, 90 (1999) https://doi.org/10.1016/S0378-7753(99)00246-3
  19. H. Gadjov,M.Gorova,V.Kotzevaa, G. Avdeev, S. Uzunova, D. Kovacheva, Journal of Power Sources 134, 110-117 (2004) https://doi.org/10.1016/j.jpowsour.2004.03.027
  20. H. M. Wu, J. P. Tu, Y.F. Yuan, Y. Li, X. B. Zhao, G. S. Cao, Electrochimica Acta 50, 4104 (2005) https://doi.org/10.1016/j.electacta.2005.01.026
  21. Gholam-Abbas Nazri, Lithium Batteries : Science and Technology, p.321-323 Kluwer Academic Publishers (2003)
  22. B. D. Cullity, and S. R. Stock, Elements of X-ray Diffraction, p.174-177, Prentice Hill. (2001)
  23. L. Dupont, M. Hervieu, G. Rousse, C. Masquelier, M. R. Palacin, A Y. Chabre, and J. M. Tarascon, Journal of Solid State Chemistry 155, 394 (2000) https://doi.org/10.1006/jssc.2000.8940
  24. Ming-Ren Huang, Chi-Wen Lin, and Hong-Yang Lu, Applied surface science 177, 103 (2001) https://doi.org/10.1016/S0169-4332(01)00205-7
  25. David B. Williams and C. Barry Carter, Transmission Electron Microscopy, p.259-260, Plenum Press.NewYork and London (1996)