• Title/Summary/Keyword: $NH_3$ annealing

Search Result 50, Processing Time 0.023 seconds

Effects of Catalysts on Properties of Sol-Gel Derived $PbTiO_3$ Thin Film ($PbTiO_3$ 졸-겔 박막의 특성에 미치는 촉매의 영향)

  • 김승현;김창은;정형진;오영제
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.7
    • /
    • pp.793-801
    • /
    • 1996
  • The effect of catalysts which was catalyzed by acid($HNO_3$) and base ($NH_4OH$) or not on the surface microst-ructures and consequent dielectric characteristics of the $PbTiO_3$ thin films prepared by sol-gel method were investigated. The result indicated that bse catalyst promoted the phase transformation of perovskite phase while acid catalyst was found to produce most uniform surface microstructure and improved dielectric properties However degradation of properties due to secondary phase formation and non-uniform microstructure at high annealing temperature (>75$0^{\circ}C$) by rapid diffusion of lead was unavoidable in any case as long as $Si_{(100)}$ \ $SiO_2$ \Pt substrate used.

  • PDF

Characteristic of Copper Films on Molybdenum Substrate by Addition of Titanium in an Advanced Metallization Process (Mo 하지층의 첨가원소(Ti) 농도에 따른 Cu 박막의 특성)

  • Hong, Tae-Ki;Lee, Jea-Gab
    • Korean Journal of Materials Research
    • /
    • v.17 no.9
    • /
    • pp.484-488
    • /
    • 2007
  • Mo(Ti) alloy and pure Cu thin films were subsequently deposited on $SiO_2-coated$ Si wafers, resulting in $Cu/Mo(Ti)/SiO_2$ structures. The multi-structures have been annealed in vacuum at $100-600^{\circ}C$ for 30 min to investigate the outdiffusion of Ti to Cu surface. Annealing at high temperature allowed the outdiffusion of Ti from the Mo(Ti) alloy underlayer to the Cu surface and then forming $TiO_2$ on the surface, which protected the Cu surface against $SiH_4+NH_3$ plasma during the deposition of $Si_3N_4$ on Cu. The formation of $TiO_2$ layer on the Cu surface was a strong function of annealing temperature and Ti concentration in Mo(Ti) underlayer. Significant outdiffusion of Ti started to occur at $400^{\circ}C$ when the Ti concentration in Mo(Ti) alloy was higher than 60 at.%. This resulted in the formation of $TiO_2/Cu/Mo(Ti)\;alloy/SiO_2$ structures. We have employed the as-deposited Cu/Mo(Ti) alloy and the $500^{\circ}C-annealed$ Cu/Mo(Ti) alloy as gate electrodes to fabricate TFT devices, and then measured the electrical characteristics. The $500^{\circ}C$ annealed Cu/Mo($Ti{\geq}60at.%$) gate electrode TFT showed the excellent electrical characteristics ($mobility\;=\;0.488\;-\;0.505\;cm^2/Vs$, on/off $ratio\;=\;2{\times}10^5-1.85{\times}10^6$, subthreshold = 0.733.1.13 V/decade), indicating that the use of Ti-rich($Ti{\geq}60at.%$) alloy underlayer effectively passivated the Cu surface as a result of the formation of $TiO_2$ on the Cu grain boundaries.

화학기상증착법을 이용한 h-BN의 성장과 그 특성

  • Seo, Eun-Gyeong;Kim, Seong-Jin;Kim, Won-Dong;Bu, Du-Wan;Hwang, Chan-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.407-407
    • /
    • 2012
  • 화학기상증착법(CVD; Chemical Vapor deposition)으로 h-BN을 증착하여 성장 시간에 따른 표면의 특성 및 결정성을 연구하였다. 암모니아 보레인(BH3NH3)을 보론 나이트라이드(Boron Nitride) 박막의 전구물질로 이용하였으며, $70{\sim}120^{\circ}C$로 열을 가하여 열분해하였다. $25{\mu}m$ 두께의 구리 기판을 챔버에 넣어서 Low pressure (~25 mTorr) 상태가 되도록 한다. 25 mTorr 이하의 압력에서 수소 가스 (0.2~1sccm)를 넣고 $20^{\circ}C$/min로 가열한 후 약 한 시간 후에 $990{\sim}1,000^{\circ}C$가 된다. 그 후 Cu foil의 표면을 부드럽게 하고, 산화막을 제거하기 위해 $990^{\circ}C$에서 40 분간 열처리(annealing)한다. 그 후 암모니아 보레인에서 분해된 보라진 가스(borazine; B3H6N3)로 h-BN을 합성한다. 성장 시간이 길수록 더 많은 부분이 보론 나이트라이드에 의해 덮인다는 것을 관찰하였고, 성장 시 주입하는 수소의 양(0.2~5 sccm)과 알곤(0~15 sccm)의 혼합 비율에 따라 보론 나이트라이드의 domain size가 변화함을 알 수 있었다. 그 각각의 차이를 주사 전자현미경(SEM; Scanning Electron Microscopy)을 통해 확인하고, 결정성을 라만 분광(Raman spectroscopy), 광전자 분광(XPS; X-ray photoelectron spectroscopy)으로 비교 분석하였다.

  • PDF

Characteristics of TaN by Atomic Layer Deposition as a Copper Diffusion Barrier (ALD법을 이용해 증착된 TaN 박막의 Cu 확산방지 특성)

  • Na, Kyoung-Il;Hur, Won-Nyung;Boo, Sung-Eun;Lee, Jung-Hee
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.195-198
    • /
    • 2004
  • For a diffusion barrier against copper, tantalum nitride films have been deposited on $SiO_{2}$ by atomic layer deposition (ALD), using PEMAT(Pentakis(ethylmethylamino)tantalum) and $NH_{3}$ as precursors, Ar as purging gas. The deposition rate of TaN at substrate temperature $250^{\circ}C$ was about $0.67{\AA}$ per one cycle. The stability of TaN films as a Cu diffsion barrier was tested by thermal annealing for 30 minutes in $N_{2}$ ambient and characterized through XRD, sheet resistance, and C-V measurement(Cu($1000{\AA}$)/TaN($50{\AA}$)/$SiO_{2}$($2000{\AA}$)/Si capacitor fabricated), which prove the TaN film maintains the barrier properties Cu below $400^{\circ}C$.

Codoped ZnO films by a co-spray deposition technique for photovoltaic applications

  • Zhou, Bin;Han, Xiaofei;Tao, Meng
    • Advances in Energy Research
    • /
    • v.2 no.2
    • /
    • pp.97-104
    • /
    • 2014
  • A co-spray deposition technique has been developed to bypass a fundamental limitation in the conventional spray deposition technique, i.e., the deposition of metal oxides from incompatible precursors in the starting solution. With this technique, ZnO films codoped with F and Al have been successfully synthesized, in which F is incompatible with Al. Two starting solutions were prepared and co-sprayed through two separate spray heads. One solution contained only the F precursor, $NH_4F$. The second solution contained the Zn and Al precursors, $Zn(O_2CCH_3)_2$ and $AlCl_3$. The deposition was carried out at $500^{\circ}C$ on soda-lime glass in air. A minimum sheet resistance, $55.4{\Omega}/{\square}$, was obtained for Al and F codoped ZnO films after vacuum annealing at $400^{\circ}C$, which was lower than singly-doped ZnO with either Al or F. The transmittance for the codoped ZnO samples was above 90% in the visible range. This co-spray deposition technique provides a simple and cost-effective way to synthesize metal oxides from incompatible precursors with improved properties for photovoltaic applications.

Photoluminescence of Neutron-irradiated GaN Films and Nanowires

  • Seong, Ho-Jun;Yeom, Dong-Hyuk;Kim, Hyun-Suk;Cho, Kyoung-Ah;Kim, Sang-Sig
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.7
    • /
    • pp.603-609
    • /
    • 2008
  • Photoluminescence (PL) of neutron-irradiated GaN films and nanowires is investigated in this study. The GaN films and nanowires were irradiated by neutron beams in air at room temperature, and the neutron-irradiated films and nanowires were annealed in an atmosphere of $NH_3$ at temperatures ranging from 500 to $1100^{\circ}C$. The line-shapes of the PL spectra taken from the neutron-irradiated GaN films and nanowires were changed differently with increasing annealing temperature. In this study, light-emitting centers created in the neutron-irradiated GaN films and nanowires are examined and their origins are discussed. In addition, it is suggested here that the neutron-transmutation-doping is a simple and useful means of homogeneous impurity doping into nanowires with control of the doping concentration.

Influence of Intermolecular Interactions on the Structure of Copper Phthalocyanine Layers on Passivated Semiconductor Surfaces

  • Yim, Sang-Gyu;Jones, Tim S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2247-2254
    • /
    • 2010
  • The surface structures of copper phthalocyanine (CuPc) thin films deposited on sulphur-passivated and plane perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA)-covered InAs(100) surfaces have been studied by low energy electron diffraction (LEED) and van der Waals (vdW) intermolecular interaction energy calculations. The annealing to $300^{\circ}C$ and $450^{\circ}C$ of $(NH_4)_2S_x$-treated InAs(100) substrates produces a ($1{\times}1$) and ($2{\times}1$) S-passivated surface respectively. The CuPc deposition onto the PTCDA-covered InAs(100) surface leads to a ring-like diffraction pattern, indicating that the 2D ordered overlayer exists and the structure is dominantly determined by the intermolecular interactions rather than substrate-molecule interactions. However, no ordered LEED patterns were observed for the CuPc on S-passivated InAs(100) surface. The intermolecular interaction energy calculations have been carried out to rationalise this structural difference. In the case of CuPc unit cells on PTCDA layer, the planar layered CuPc structure is more stable than the $\alpha$-herringbone structure, consistent with the experimental LEED results. For CuPc unit cells on a S-($1{\times}1$) layer, however, the $\alpha$-herringbone structure is more stable than the planar layered structure, consistent with the absence of diffraction pattern. The results show that the lattice structure during the initial stages of thin film growth is influenced strongly by the intermolecular interactions at the interface.

$Si_3N_4$ Coating for Improvement of Anti-oxidation and Anti-wear Properties by Low Pressure Chemical Vapor Deposition (저압화학기상증착법에 의한 $Si_3N_4$ 내산화.내마모 코팅)

  • Lee, Seung-Yun;Kim, Ok-Hee;Yeh, Byung-Hahn;Jung, Bahl;Park, Chong-Ook
    • Korean Journal of Materials Research
    • /
    • v.5 no.7
    • /
    • pp.835-841
    • /
    • 1995
  • The deposition properties of Si$_3$N$_4$ deposited by low pressure chemical vapor deposition were studied to evaluate Si$_3$N$_4$as part of multi-layer coatings for anti-oxidation and anti-wear coating of graphite in the propellant-burning environment. Si$_3$N$_4$was deposited on the pack-SiC coated graphite and the tendencies of deposition rate and surface morphology changes with temperatures and reaction gas ratios were investigated. In low deposition temperatures the deposition rate increased tilth increasing temperature but in high temperatures the deposition rate decreased with increasing temperature. The grain size of Si$_3$N$_4$decreased with increasing temperature. In condition that the range of reaction gas ratios is 20$\leq$NH$_3$/SiH$_4$$\leq$40, the deposition rate and surface morphology did not change. The Si$_3$N$_4$deposited at 800~130$0^{\circ}C$ was amorphous, and by post-annealing at 130$0^{\circ}C$ in a $N_2$ambient, the Si$_3$N$_4$crystalized.

  • PDF

Thermal Degradation of Thermoplastic Polyurethane Modified with Polycarbonate (열가소성 폴리우레탄으로 개질된 폴리카보네이트에서 TPU의 열분해)

  • 권회진;차윤종;최순자
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.314-325
    • /
    • 2000
  • Thermal degradation of thermoplasitc polyurethane modified polycarbonate has been investigated by means of DSC, GPC and FT-IR techniques. The polyurethanes used in this study are TPU-35 and TPU-53 containing 35.5 and 53.4 wt% of hard segments, respectively. The more content of hard segment, the higher the glass transition temperature (T$_{g}$) of TPU was observed. On the other hand, the T$_{g}$ of the TPU modified PC decreased with the content of TPU and the annealing temperature regardless of the hard segment contents. The latter behavior nay arise from the thermal degradation of TPU upon annealing process: the observed thermal degradation temperatures were at 240 and 25$0^{\circ}C$ for the PC/TPU-35 and PC/TPU-53, respectively. The molecular weight, molecular weight distribution and viscosity agree well with the DSC measurement, which implicates a thermal degradation of TPU. In addition, thermal stability of the TPU modified PC linearly decreased with an incorporation of TPU. Transesterification or any interaction was not observed using FT-IR: the evidence was no frequency shift or any variance betwere the carbonyl stretching and NH group. For the specimens prepared below the degradation temperature, the enhancement of the thickness dependent impact strength of the PC/TPU blend was observed, and the morphology of the two blends was compared.d.

  • PDF

Phase Change of Nanorod-Clustered $MnO_2$ by Hydrothermal Reaction Conditions and the Lithium-ion Battery Cathode Properties of $LiMn_2O_4$ Prepared from the $MnO_2$ (수열합성 조건에 따른 나노로드 클러스터형 $MnO_2$의 상변화와 이를 이용한 $LiMn_2O_4$의 리튬이온전지 양전극 특성)

  • Kang, Kun-Young;Choi, Min Gyu;Lee, Young-Gi;Kim, Kwang Man
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.541-547
    • /
    • 2011
  • Nanorod-clustered $MnO_2$ precursors with ${\alpha}$-, ${\beta}$-, and ${\gamma}$-phases are synthesized by hydrothermal reaction of $MnSO_45H_2O$ and $(NH_4)S_2O_8$. The formation of nanorod-clustered ${\beta}-MnO_2$ is particularly confirmed under the conditions of high reactant concentration and hydrothermal reaction at $150^{\circ}C$. The spinel $LiMn_2O_4$ nanorod-clusters are also prepared by lithiating the $MnO_2$ precursors, varying the concentration of lithiating agent ($LiC_3H_3O_2{\cdot}2H_2O$) and heat treatment temperature, and characterized for use as cathode material of lithium-ion batteries. As a result, the nanorod-clustered $LiMn_2O_4$ prepared from the ${\beta}-MnO_2$ at higher $LiC_3H_3O_2{\cdot}2H_2O$ concentration and the annealing at $800^{\circ}C$ is proven to show the cubic spinel structure and to achieve the high initial discharge capacity of 120 mAh/g.