DOI QR코드

DOI QR Code

Influence of Intermolecular Interactions on the Structure of Copper Phthalocyanine Layers on Passivated Semiconductor Surfaces

  • Yim, Sang-Gyu (Department of Chemistry, Kookmin University) ;
  • Jones, Tim S. (Department of Chemistry, University of Warwick)
  • Received : 2010.04.17
  • Accepted : 2010.06.16
  • Published : 2010.08.20

Abstract

The surface structures of copper phthalocyanine (CuPc) thin films deposited on sulphur-passivated and plane perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA)-covered InAs(100) surfaces have been studied by low energy electron diffraction (LEED) and van der Waals (vdW) intermolecular interaction energy calculations. The annealing to $300^{\circ}C$ and $450^{\circ}C$ of $(NH_4)_2S_x$-treated InAs(100) substrates produces a ($1{\times}1$) and ($2{\times}1$) S-passivated surface respectively. The CuPc deposition onto the PTCDA-covered InAs(100) surface leads to a ring-like diffraction pattern, indicating that the 2D ordered overlayer exists and the structure is dominantly determined by the intermolecular interactions rather than substrate-molecule interactions. However, no ordered LEED patterns were observed for the CuPc on S-passivated InAs(100) surface. The intermolecular interaction energy calculations have been carried out to rationalise this structural difference. In the case of CuPc unit cells on PTCDA layer, the planar layered CuPc structure is more stable than the $\alpha$-herringbone structure, consistent with the experimental LEED results. For CuPc unit cells on a S-($1{\times}1$) layer, however, the $\alpha$-herringbone structure is more stable than the planar layered structure, consistent with the absence of diffraction pattern. The results show that the lattice structure during the initial stages of thin film growth is influenced strongly by the intermolecular interactions at the interface.

Keywords

References

  1. Kowalsky, W.; Benstem, T.; Bohler, A.; Dirr, S.; Johannes, H.-H.; Metzdorf, D.; Neuner, H.; Schöbel, J.; Urbach, P. Phys. Chem. Chem. Phys. 1999, 1, 1719. https://doi.org/10.1039/a809431d
  2. Shalav, A. Prog. Photovolt: Res. Appl. 2009, 17, 513 https://doi.org/10.1002/pip.916
  3. Hook, D. E.; Fritz, T.; Ward, M. D. Adv. Mater. 2001, 13, 227. https://doi.org/10.1002/1521-4095(200102)13:4<227::AID-ADMA227>3.0.CO;2-P
  4. Koma, A. Prog. Cryst. Growth Charact. 1995, 30, 129. https://doi.org/10.1016/0960-8974(95)00009-V
  5. Rochet, F.; Dufour, G.; Roulet, H.; Motta, N.; Sgarlata, A.; Piancastelli, M. N.; Crescenzi, M. De Surf. Sci. 1994, 319, 10. https://doi.org/10.1016/0039-6028(94)90565-7
  6. Umbach, E.; Sokolowski, M.; Fink, R. Appl. Phys. A 1996, 63, 565. https://doi.org/10.1007/BF01567212
  7. Sandroff, C. J.; Nottenburg, N.; Bishoff, J. -C.; Baht, R. Appl. Phys. Lett. 1987, 51, 33. https://doi.org/10.1063/1.98877
  8. Oigawa, H.; Fan, J. -F.; Nannichi, Y.; Ando, K.; Saiki, K.; Koma, A. Jpn. J. Appl. Phys. Part 2 1989, 28, L340. https://doi.org/10.1143/JJAP.28.L340
  9. Lowe, M. J.; Veal, T. D.; McConville, C. F.; Bell, G. R.; Tsukamoto, S.; Koguchi, N. Surf. Sci. 2003, 523, 179. https://doi.org/10.1016/S0039-6028(02)02416-0
  10. Chung, C. -H.; Yi, S. I.; Weinberg, W. H. J. Vac. Sci. Technol. A 1997, 15, 1163. https://doi.org/10.1116/1.580448
  11. Sugahara, H.; Oshima, M.; Klauser, R.; Oigawa, H.; Nannich, Y. Surf. Sci. 1991, 242, 335. https://doi.org/10.1016/0039-6028(91)90289-5
  12. Moriaty, P.; Murphy, B.; Roberts, L.; Cafolla, A. A.; Hughes, G.; Koenders, L.; Bailey, P. Phys. Rev. B 1994, 50, 14237. https://doi.org/10.1103/PhysRevB.50.14237
  13. Wilmsen, C. W.; Geib, K. M.; Shim, J.; Iyer, R.; Lile, D. L.; Pouch, J. J. J. Vac. Sci. Technol. B 1989, 7, 851. https://doi.org/10.1116/1.584613
  14. McGovern, I. T. Appl. Surf. Sci. 2000, 166, 196. https://doi.org/10.1016/S0169-4332(00)00413-X
  15. Nannichi, Y.; Fan, J.-F.; Koma, A. Jpn. J. Appl. Phys. 1988, 27, L2367. https://doi.org/10.1143/JJAP.27.L2367
  16. Lin, Y. J.; Liu, B. Y.; Chin, Y. M. Thin Solid Films 2009, 517, 5508. https://doi.org/10.1016/j.tsf.2009.04.023
  17. Heutz, S.; Jones, T. S. J. Appl. Phys. 2002, 92, 3039. https://doi.org/10.1063/1.1499743
  18. Yim, S.; Jones, T. S. Phys. Rev. B 2003, 67, 165308. https://doi.org/10.1103/PhysRevB.67.165308
  19. Bell, G. R.; McConville, C. F.; Jones, T. S. Appl. Surf. Sci. 1996, 104-105, 17. https://doi.org/10.1016/S0169-4332(96)00115-8
  20. Fukuda, Y.; Suzuki, Y.; Sanada, N.; Shimomura, M.; Masuda, S. Phys. Rev. B 1997, 56, 1084. https://doi.org/10.1103/PhysRevB.56.1084
  21. Kendrick, C.; Kahn, A. J. Cryst. Growth 1997, 181, 181. https://doi.org/10.1016/S0022-0248(97)00285-6
  22. Ogawa, T.; Kuwamoto, K.; Isoda, S.; Kobayashi, T.; Karl, N. Acta Crystal. B: Struct. Sci. B 1999, 55, 123. https://doi.org/10.1107/S0108768198009872
  23. Halgren, T. A. J. Am. Chem. Soc. 1992, 114, 7827. https://doi.org/10.1021/ja00046a032
  24. Nakamura, M.; Tokumoto, H. Surf. Sci. 1998, 398, 143. https://doi.org/10.1016/S0039-6028(98)80019-8
  25. Mastryukov, V.; Ruan, C.; Fink, M.; Wang, Z.; Pachter, R. J. Mol. Struct. 2000, 556, 225. https://doi.org/10.1016/S0022-2860(00)00636-0
  26. Yim, S.; Jones, T. S. Surf. Sci. 2002, 521, 151. https://doi.org/10.1016/S0039-6028(02)02312-9
  27. Yim, S.; Jones, T. S. J. Phys. Condens. Matt. 2003, 15, S2631. https://doi.org/10.1088/0953-8984/15/38/004
  28. Ashida, M. Bull. Chem. Soc. Jpn. 1966, 39, 2625. https://doi.org/10.1246/bcsj.39.2625