Browse > Article
http://dx.doi.org/10.9713/kcer.2011.49.5.541

Phase Change of Nanorod-Clustered $MnO_2$ by Hydrothermal Reaction Conditions and the Lithium-ion Battery Cathode Properties of $LiMn_2O_4$ Prepared from the $MnO_2$  

Kang, Kun-Young (Research Team of Power Control Devices, Electronics and Telecommunications Research Institute(ETRI))
Choi, Min Gyu (Research Team of Power Control Devices, Electronics and Telecommunications Research Institute(ETRI))
Lee, Young-Gi (Research Team of Power Control Devices, Electronics and Telecommunications Research Institute(ETRI))
Kim, Kwang Man (Research Team of Power Control Devices, Electronics and Telecommunications Research Institute(ETRI))
Publication Information
Korean Chemical Engineering Research / v.49, no.5, 2011 , pp. 541-547 More about this Journal
Abstract
Nanorod-clustered $MnO_2$ precursors with ${\alpha}$-, ${\beta}$-, and ${\gamma}$-phases are synthesized by hydrothermal reaction of $MnSO_45H_2O$ and $(NH_4)S_2O_8$. The formation of nanorod-clustered ${\beta}-MnO_2$ is particularly confirmed under the conditions of high reactant concentration and hydrothermal reaction at $150^{\circ}C$. The spinel $LiMn_2O_4$ nanorod-clusters are also prepared by lithiating the $MnO_2$ precursors, varying the concentration of lithiating agent ($LiC_3H_3O_2{\cdot}2H_2O$) and heat treatment temperature, and characterized for use as cathode material of lithium-ion batteries. As a result, the nanorod-clustered $LiMn_2O_4$ prepared from the ${\beta}-MnO_2$ at higher $LiC_3H_3O_2{\cdot}2H_2O$ concentration and the annealing at $800^{\circ}C$ is proven to show the cubic spinel structure and to achieve the high initial discharge capacity of 120 mAh/g.
Keywords
$MnO_2$; Hydrothermal Synthesis; $LiMn_2O_4$; Lithium-ion Battery; Cathode;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Li, X., Cheng, F., Guo, B. and Chen, J., "Template-Synthesized $LiCoO_{2}$, $LiMn_{2}O_{4}$, and $LiNi_{0.8}Co_{0.2}O_{2}$ Nanotubes as the Cathode Materials of Lithium Ion Batteries," J. Phys. Chem. B 109, 14017-14024(2005).   DOI   ScienceOn
2 Luo, J.-Y., Cheng, L. and Xia, Y.-Y., "$LiMn_{2}O_{4}$ Hollow Nanosphere Electrode Material with Excellent Cycling Reversibility and Rate Capability," Electrochem. Commun. 9, 1404-1409(2007).   DOI   ScienceOn
3 Luo, J.-Y., Xiong, H.-M. and Xia, Y.-Y., "$LiMn_{2}O_{4}$ Nanorods, Nanothorn Microspheres, and Hollow Nanospheres as Enhanced Cathode Materials of Lithium Ion Battery," J. Phys. Chem. C. 112, 12051-12057(2008).   DOI   ScienceOn
4 Cao, A. M., Hu, J. S., Liang, H. P. and Wan, L. J., "Self-Assembled Vanadium Pentoxide ($V_{2}O_{5}$) Hollow Microspheres from Nanorods and Their Application in Lithium-ion Batteries," Angew. Chem. Intern. Ed., 44, 4391-4395(2005).   DOI   ScienceOn
5 Wang, X. and Li, Y., "Rational Synthesis of $\alpha-MnO_{2}$ Single-Crystal Nanorods", Chem. Commun, 764-765(2002).
6 Wang, X. and Li, Y., "Selected-Control Hydrothermal Synthesis of $\alpha$- and $\beta-MnO_{2}$ Single Crystal Nanowires," J. Am. Chem. Soc. 124, 2880-2881(2002).   DOI   ScienceOn
7 Yuan, J., Li, W.-N., Gomez, S. and Suib, S. L., "Shape-Controlled Synthesis of Manganese Oxide Octahedral Molecular Sieve Three-Dimensional Nanostructures," J. Am. Chem. Soc., 127, 14184-14185(2005).   DOI   ScienceOn
8 Thackeray, M. M., "Manganese Oxides for Lithium Battery," Prog. Solid State Chem., 25, 1-71(1997).   DOI   ScienceOn
9 Bao, S.-J., Li, C.-M., Li, H.-L. and Luong, J. H. T., "Morphology and Electrochemistry of $LiMn_{2}O_{4}$ Optimized by Using Different Mn-Sources," J. Power Sources 164, 885-889(2007).   DOI   ScienceOn
10 Jiang, C. H., Dou, S. X., Liu, H. K., Ichihara, M. and Zhou, H. S., "Synthesis of Spinel $LiMn_{2}O_{4}$ Nanoparticles through One-Step Hydrothermal Reaction," J. Power Sources 172, 410-415 (2007).   DOI   ScienceOn
11 Fang, H., Li, L., Yang, Y., Yan, G. and Li, G., "Low-Temperature Synthesis of Highly Crystallized $LiMn_{2}O_{4}$ from Alpha Manganese Oxide Nanorods," J. Power Sources 184, 494-497(2008).   DOI   ScienceOn
12 Shaju, K. M. and Bruce, P. G., "A Stoichiometric Nano-$LiMn_{2}O_{4}$ Spinel Electrode Exhibiting High Power and Stable Cycling," Chem. Mater. 20, 5557-5562(2008).   DOI   ScienceOn
13 Kim, D. K., Muralidharan, P., Lee, H.-W., Ruffo, R., Yang, Y., Chan, C. K., Peng, H., Huggins, R. A. and Cui, Y., "Spinel $LiMn_{2}O_{4}$ Nanorods as Lithium Ion Battery Cathodes," Nano Lett. 8, 3948-3952(2008).   DOI   ScienceOn
14 Hosono, E., Kudo, T., Honma, I., Matsuda, H. and Zhou, H., "Synthesis of a Single Crystalline Spinel $LiMn_{2}O_{4}$ Nanowires for a Lithium Ion Battery with High Power Density," Nano Lett. 9, 1045-1051(2009).   DOI   ScienceOn
15 Cho, J., "$VO_{x}$-coated $LiMn_{2}O_{4}$ nanorod clusters for lithium battery cathode materials," J. Mater. Chem. 18, 2257-2261(2008).   DOI   ScienceOn
16 Tang, W., Yang, X., Liu, Z. and Ooi, K., "Preparation of $\beta-MnO_{2}$ Nanocrystal/Acetylene Black Composites for Lithium Batteries," J. Mater. Chem. 13, 2989-2995(2003).   DOI   ScienceOn
17 Luo, J.-Y., Zhang, J.-J. and Xia, Y.-Y., "Highly Electrochemical Reaction of Lithium in the Ordered Mesoporous $\beta-MnO_{2}$," Chem. Mater. 18, 5618-5623(2006).   DOI   ScienceOn
18 Jiao, F. and Bruce, P. G., "Mesoporous Crystalline $\beta-MnO_{2}$-A Reversible Positive Electrode for Rechargeable Lithium Batteries," Adv. Mater. 19, 657-660(2007).   DOI   ScienceOn
19 Kim, I. Y., Ha, H.-W., Kim, T. W., Paik, Y., Choy, J.-H. and Hwang, S.-J., "Origin of Improved Electrochemical Activity of b-$MnO_{2}$ Nanorods: Effect of the Mn Valence in the Precursor on the Crystal Structure and Electrode Activity of Manganates," J. Phys. Chem. C 113, 21274-21282(2009).   DOI   ScienceOn
20 Huang, X., Lv, D., Zhang, Q., Chang, H., Gan, J. and Yang, Y., "Highly crystalline Macroporous $\beta-MnO_{2}$: Hydrothermal Synthesis and Application in Lithium Battery," Electrochim. Acta 55, 4915-4920(2010).   DOI   ScienceOn
21 Curtis, C. J., Wang, J. and Schulz, D. L., "Preparation and Characterization of $LiMn_{2}O_{4}$ Spinel Nanoparticles as Cathode Materials in Secondary Li Batteries," J. Electrochem. Soc. 151, A590-A598(2004).   DOI   ScienceOn
22 Li, N., Patrissi, C. J., Che, G. and Martin, C. L., "Rate Capabilities of Nanostructured $LiMn_{2}O_{4}$ Electrodes in Aqueous Electrolyte," J. Electrochem. Soc. 147, 2044-2049(2000).   DOI   ScienceOn