• 제목/요약/키워드: $MnCo_2O_4$

검색결과 489건 처리시간 0.018초

수열법에 의한 $(Li,Al)MnO_{2}(OH)_{2}$:Co 화합물의 합성 (Hydrothermal synthesis of $(Li,Al)MnO_2(OH)_2$:Co compound)

  • 최종건;황완인;김판채
    • 한국결정성장학회지
    • /
    • 제11권4호
    • /
    • pp.154-159
    • /
    • 2001
  • (Li,Al)$MnO_2(OH)_2$:Co 화합물의 합성르 수열법에 의해 행하였다. 출발원료는 $MnO_2$, LiOH.$H_2$O, $Co_3O_4$, $Al(OH)_3$이 사용되었으며, 단일상의 (Li,Al)$MnO_2(OH)_2$:Co 화합물을 얻을 수 있는 최적의 합성조건은 다음과 같았다. 반응온도 : $200^{\circ}C$ 반응시간 ; 3일간, 반응장치 ; 시이소형, 수열용매 ; 3M-KOH, (Li,Al)$MnO_2(OH)_2$:Co 의 원자비 = 1:2.1:2.5~2:0.5~1. 수열합성된 단사의 (Li,Al)$MnO_2(OH)_2$:Co 화합물은 결정성이 우수하였으며, 청색안료로써 천연 오수에 필적하는 발색효과를 나타내었다. 합성된 (Li,Al)$MnO_2(OH)_2$:Co 화합물의 형태는 육각 판싱이였으며, 입자의 크기는 0.5~1 $\mu\textrm{m}$의 미립자이였다.

  • PDF

Fabrication of a MnCo2O4/gadolinia-doped Ceria (GDC) Dual-phase Composite Membrane for Oxygen Separation

  • Yi, Eun-Jeong;Yoon, Mi-Young;Moon, Ji-Woong;Hwang, Hae-Jin
    • 한국세라믹학회지
    • /
    • 제47권2호
    • /
    • pp.199-204
    • /
    • 2010
  • A dual-phase ceramic membrane consisting of gadolinium-doped ceria (GDC) as an oxygen ion conducting phase and $MnCo_2O_4$ as an electron conducting phase was fabricated by sintering a GDC and $MnCo_2O_4$ powder mixture. The $MnCo_2O_4$ was found to maintain its spinel structure at temperatures lower than $1200^{\circ}C$. (Mn,Co)(Mn,Co)$O_4$ spinel, manganese and cobalt oxides formed in the sample sintered at $1300^{\circ}C$ in an air atmosphere. XRD analysis revealed that no reaction phases occurred between GDC and $MnCo_2O_4$ at $1200^{\circ}C$. The electrical conductivity did not exhibit a linear relationship with the $MnCo_2O_4$ content in the composite membranes, in accordance with percolation theory. It increased when more than 15 vol% of $MnCo_2O_4$ was added. The oxygen permeation fluxes of the composite membranes increased with increasing $MnCo_2O_4$ content and this can be explained by the increase in electrical conductivity. However, the oxygen permeation flux of the composite membranes appeared to be governed not only by electrical conductivity, but also by the microstructure, such as the grain size of the GDC matrix.

전이금속 치환 리튬이온 이차전지 정극 Li($Mn_{1-\delta}$$M_{\delta}$)$_2$$O_4$의 전기적 특성 (Electrical Characteristics of Cathode Li($Mn_{1-\delta}$$M_{\delta}$)$_2$$O_4$ Substituted by Transition Metals in Li-Ion Secondary Batteries)

  • 박재홍;김정식;유광수
    • 한국세라믹학회지
    • /
    • 제37권5호
    • /
    • pp.466-472
    • /
    • 2000
  • As cathode materials of LiMn2O4-based lithium-ion secondary batteries, Li(Mn1-$\delta$M$\delta$)2O4 (M=Ni and Co, $\delta$=0, 0.05, 0.1 and 0.2) materials which Co and Ni are substituted for Mn, were syntehsized by the solid state reaction at 80$0^{\circ}C$ for 48 hours. No second phases were formed in Li(Mn1-$\delta$M$\delta$)2O4 system with substitution of Co. However, substitution of Ni caued to form a second phase of NiO when its composition exceeded over 0.2 of $\delta$ in Li(Mn1-$\delta$M$\delta$)2O4. As the results of charging-discharging test, the maximum capacity of Li(Mn1-$\delta$M$\delta$)2O4 appeared in $\delta$=0.1 for both Co and Ni. Also, Li(Mn1-$\delta$M$\delta$)2O4 electrode showed higher capacity and better cycle performance than LiMn2O4.

  • PDF

A Study on the Recovery of Li2CO3 from Cathode Active Material NCM(LiNiCoMnO2) of Spent Lithium Ion Batteries

  • Wang, Jei-Pil;Pyo, Jae-Jung;Ahn, Se-Ho;Choi, Dong-Hyeon;Lee, Byeong-Woo;Lee, Dong-Won
    • 한국분말재료학회지
    • /
    • 제25권4호
    • /
    • pp.296-301
    • /
    • 2018
  • In this study, an experiment is performed to recover the Li in $Li_2CO_3$ phase from the cathode active material NMC ($LiNiCoMnO_2$) in waste lithium ion batteries. Firstly, carbonation is performed to convert the LiNiO, LiCoO, and $Li_2MnO_3$ phases within the powder to $Li_2CO_3$ and NiO, CoO, and MnO. The carbonation for phase separation proceeds at a temperature range of $600^{\circ}C{\sim}800^{\circ}C$ in a $CO_2$ gas (300 cc/min) atmosphere. At $600{\sim}700^{\circ}C$, $Li_2CO_3$ and NiO, CoO, and MnO are not completely separated, while Li and other metallic compounds remain. At $800^{\circ}C$, we can confirm that LiNiO, LiCoO, and $Li_2MnO_3$ phases are separated into $Li_2CO_3$ and NiO, CoO, and MnO phases. After completing the phase separation, by using the solubility difference of $Li_2CO_3$ and NiO, CoO, and MnO, we set the ratio of solution (distilled water) to powder after carbonation as 30:1. Subsequently, water leaching is carried out. Then, the $Li_2CO_3$ within the solution melts and concentrates, while NiO, MnO, and CoO phases remain after filtering. Thus, $Li_2CO_3$ can be recovered.

Mn-Cu/Al2O3 촉매 상에서 NO, CO 및 CH4 동시 산화 (Simultaneous Oxidation of NO, CO, and CH4 over Mn-Cu/Al2O3 Catalyst)

  • 정지은;이창용
    • 공업화학
    • /
    • 제35권1호
    • /
    • pp.1-7
    • /
    • 2024
  • NO, CO 및 CH4의 동시 산화를 위한 4 종의 Mn-M/Al2O3 (M = Cu, Fe, Co, Ce) 촉매를 제조하여 산화 활성을 비교하고, 동시 산화활성이 가장 높은 Mn-Cu/Al2O3 촉매에 대해 XRD, Raman, XPS, O2-TPD 분석을 수행하였다. XRD 분석 결과, Mn-Cu/Al2O3 촉매에서는 담지된 Mn과 Cu는 복합산화물로 존재하였다. Raman 및 XPS 분석을 통해 Mn-Cu/Al2O3 촉매는 Mn-O-Cu 결합의 형성 과정에서 Mn 이온과 Cu 이온 간의 전자 수수가 일어남을 알 수 있었다. XPS O 1s 및 O2-TPD 분석을 통해 Mn-Cu/Al2O3 촉매는 Mn/Al2O3 촉매에 비해 이동성이 우수한 흡착산소 종이 증가했음을 알 수 있었다. Mn-Cu/Al2O3 촉매의 높은 동시 산화 활성은 이러한 결과에 기인한다고 판단된다. Mn-Cu/Al2O3 촉매 상에서 NO는 CO와 CH4 산화를 촉진하지만, NO 산화는 억제되었다. 이는 NO로부터 산화된 NO2가 CO 및 CH4의 산화제로 사용되었기 때문이라고 추측된다. CO와 CH4의 산화 반응은 경쟁하지만 촉매 활성 온도가 다르기 때문에 그 효과가 두드러지지 않았다.

활성화된(Fe1-xMnx)3O4-δ과 (Fe1-xCox)3O4-δ의 이산화탄소 분해 특성 (CO2 Decomposition Characteristics of Activated(Fe1-xMnx)3O4-δ and (Fe1-xCox)3O4-δ)

  • 박원식;오경환;이상인;서동수
    • 한국재료학회지
    • /
    • 제23권4호
    • /
    • pp.219-226
    • /
    • 2013
  • Activated magnetite ($Fe_3O_{4-{\delta}}$) has the capability of decomposing $CO_2$ proportional to the ${\delta}$-value at comparatively low temperature of $300^{\circ}C$. To enhance the $CO_2$ decomposition capability of $Fe_3O_{4-{\delta}}$, $(Fe_{1-x}Co_x)_3O_{4-{\delta}}$ and $(Fe_{1-x}Mn_x)_3O_{4-{\delta}}$ were synthesized and then reacted with $CO_2$. $Fe_{1-x}Co_xC_2O_4{\cdot}2H_2O$ powders having Fe to Co mixing ratios of 9:1, 8:2, 7:3, 6:4, and 5:5 were synthesized by co-precipitation of $FeSO_4{\cdot}7H_2O$ and $CoSO_4{\cdot}7H_2O$ solutions with a $(NH_4)_2C_2O_4{\cdot}H_2O$ solution. The same method was used to synthesize $Fe_{1-x}Mn_xC_2O_4{\cdot}2H_2O$ powders having Fe to Mn mixing ratios of 9:1, 8:2, 7:3, 6:4, 5:5 with a $MnSO_4{\cdot}4H_2O$ solution. The thermal decomposition of synthesized $Fe_{1-x}Co_xC_2O_4{\cdot}2H_2O$ and $Fe_{1-x}Mn_xC_2O_4{\cdot}2H_2O$ was analyzed in an Ar atmosphere with TG/DTA. The synthesized powders were heat-treated for 3 hours in an Ar atmosphere at $450^{\circ}C$ to produce activated powders of $(Fe_{1-x}Co_x)_3O_{4-{\delta}}$ and $(Fe_{1-x}Mn_x)_3O_{4-{\delta}}$. The activated powders were reacted with a mixed gas (Ar : 85 %, $CO_2$ : 15 %) at $300^{\circ}C$ for 12 hours. The exhaust gas was analyzed for $CO_2$ with a $CO_2$ gas analyzer. The decomposition of $CO_2$ was estimated by measuring $CO_2$ content in the exhaust gas after the reaction with $CO_2$. For $(Fe_{1-x}Mn_x)_3O_{4-{\delta}}$, the amount of $Mn^{2+}$ oxidized to $Mn^{3+}$ increased as x increased. The ${\delta}$ value and $CO_2$ decomposition efficiency decreased as x increased. When the ${\delta}$ value was below 0.641, $CO_2$ was not decomposed. For $(Fe_{1-x}Co_x)_3O_{4-{\delta}}$, the ${\delta}$ value and $CO_2$ decomposition efficiency increased as x increased. At a ${\delta}$ value of 0.857, an active state was maintained even after 12 hours of reaction and the amount of decomposed $CO_2$ was $52.844cm^3$ per 1 g of $(Fe_{0.5}Co_{0.5})_3O_{4-{\delta}}$.

수열방법으로 합성된 이산화망간의 물리화학적 특성과 일산화탄소 산화반응 (Physicochemical Properties of MnO2 Catalyst Prepared via Hydrothermal Process and its Application for CO Oxidation)

  • 이영호;전수아;박상준;윤현기;신채호
    • 청정기술
    • /
    • 제21권4호
    • /
    • pp.248-256
    • /
    • 2015
  • MnO2를 KMnO4와 MnCl2・4H2O을 이용해 자연침전을 유도한 후, 수열방법으로 120-200 ℃, 0.5-5시간 범위에서 제조하여 300 ℃에서 열처리 후 CO 산화반응을 수행하였다. 촉매활성 원인의 규명과 물리화학적 특성을 분석하기 위해 X 선 회절 분석, 질소 흡착, 주사전자현미경, 수소 또는 일산화탄소 승온환원 분석(H2- 또는 CO-TPR)을 실시하였다. 합성조건에 따라 순수한 α-MnO2 혹은 α/β-혼합상을 가진 MnO2가 각각 합성되었다. 촉매활성과 안정성은 순수한 α-MnO2 상에서 α/β-혼합상을 가진 MnO2보다 우수하게 관찰되었다. 특히, 150 ℃에서 1시간 수열 합성된 촉매는 가장 큰 비표면적인 214 m2 g-1을 가졌으며 H2, CO-TPR 분석에서 가장 우수한 환원성과 격자산소 종의 활성을 보였으며 일산화탄소의 승온 및 등온 산화반응에서 가장 우수한 촉매활성을 나타내었다. 이것은 촉매의 물리화학적 특성에 기인한 것으로 촉매의 결정구조, 비표면적, 환원성 및 격자산소 종의 활성은 촉매활성과 깊은 상관관계가 존재함을 확인하였다.

$Mn_3O_4$의 합성과 $CO_2$ 분해 및 흡착에 관한 연구 (A Study on the Synthesis of $Mn_3O_4$ and the Decomposition and Adsorption of $CO_2$)

  • 김승호;박영구;고재철
    • 한국가스학회지
    • /
    • 제4권2호
    • /
    • pp.27-32
    • /
    • 2000
  • 본 연구는 염화망간과 수산화나트륨을 이용하여 당량비에 따라 산화망간을 합성하였다. 합성된 산화망간의 결정구조와 비표면적을 측정하였으며, 이산화탄소의 분해 및 흡착에 대하여 연구하였다. 합성된 시료의 결정구조 분석결과 $Mn_3O_4$의 주피크가 나타났으며, 약간의 $MnO_2$$Mn_5O_8$도 관찰되었다. 또한 비표면적은 $13.92m^2/g{\~}32.33m^2/g$으로 측정되었다. 산화망간을 이용하여 $450^{\circ}C$에서 이산화탄소의 분해를 실시하였으며, 당량비 0.75에서 가장 잘 분해되었다. 이산화탄소의 화학흡착량을 측정한 결과 2.885cc/g${\~}$19.628cc/g으로 관찰되었으며, 이산화탄소의 흡착을 위한 최적당량비는 1.00이었다.

  • PDF

단순화한 연소법에 의해 합성한 LiMn1.92Co0.08O4와 LiNi0.7Co0.3O2 혼합물의 전기화학적 특성 (Electrochemical Properties of LiMn1.92Co0.08O4 and LiNi0.7Co0.3O2 Mixtures Prepared by a Simplified Combustion Method)

  • 송명엽;권익현;김훈욱
    • 한국세라믹학회지
    • /
    • 제41권10호
    • /
    • pp.735-741
    • /
    • 2004
  • 단순화한 연소법에 의해 합성한 $LiMn_{1.92}Co_{0.08}O_4$$LiNi_{0.7}Co_{0.3}O_2$의 혼합물의 전기화학적 성질을 알아보기 위하여, 30분 동안 milling하여 $LiMn_{1.92}Co_{0.08}O_4$-x wt$\%$ $LiNi_{0.7}Co_{0.3}O_2$ (x=9, 23, 33, 41, and 47) 조성의 혼합물을 제조하였다. x=9 조성의 전극이 비교적 큰 초기방전용량(109.9mAh/g at 0.1C)과 좋은 싸이클 성능을 가지고 있었다. 싸이클링에 따른 혼합물 전극의 방전용량 감소는 주로 $LiNi_{0.7}Co_{0.3}O_2$의 퇴화에 기인한다고 생각된다. $LiNi_{0.7}Co_{0.3}O_2$의 퇴화는 $LiMn_{1.92}Co_{0.08}O_4$로부터 용해된 Mn이 $LiNi_{0.7}Co_{0.3}O_2$ 입자를 둘러싸서(coating) 일어나는 것으로 판단된다.

열화학 사이클 H2 제조를 위한 (Co0.5 Mn0.5)Fe2O4의 열적 거동 (Thermal Behavior of (Co0.5 Mn0.5)Fe2O4 for Hydrogen Generation by Thermochemical Cycle)

  • 신현창;최승철;김철성;김종원;주오심;정광덕
    • 한국수소및신에너지학회논문집
    • /
    • 제13권2호
    • /
    • pp.143-150
    • /
    • 2002
  • The thermal behavior of $(Co_{0.5}\;Mn_{0.5})Fe_2O_4$ prepared by a co-precipitation wasinvestigated for Hz generation by the thermochemical cycle. The reduction reaction of $(Co_{0.5}\;Mn_{0.5})Fe_2O_4$ started from $480^{\circ}C$, and the weight loss was 1.6 wt% up to $1100^{\circ}C$. At this reaction, $(Co_{0.5}\;Mn_{0.5})Fe_2O_4$ was reduced by release of oxygen bonded with the $Fe^{3+}$ ion in the B site of ($CO_{0.5}$ $(Co_{0.5}\;Mn_{0.5})Fe_2O_4$. In the $H_2O$ decomposition reaction, $H_2$ was generated by oxidationof reduced $(Co_{0.5}\;Mn_{0.5})Fe_2O_4$. The crystal structure of $(Co_{0.5}\;Mn_{0.5})Fe_2O_4$ for reduction reaction maintained spinel structure and the lattice constant of $(Co_{0.5}\;Mn_{0.5})Fe_2O_4$ ($8.41\AA$) was enlarged to $8.45\AA$. But the lattice constant of $(Co_{0.5}\;Mn_{0.5})Fe_2O_4$ after $H_2O$ decomposition reaction did not change to $8.45\AA$. Then, $(Co_{0.5}\;Mn_{0.5})Fe_2O_4$ is excellent material in the thermochemical cyclic reaction due to release oxygen at low temperature for the reduction reaction and produce $H_2$ maintaining crystal structure for redox reaction.