Browse > Article
http://dx.doi.org/10.3740/MRSK.2013.23.4.219

CO2 Decomposition Characteristics of Activated(Fe1-xMnx)3O4-δ and (Fe1-xCox)3O4-δ  

Park, Won-Shik (Department of Materials Science and Engineering, Chungnam National University)
Oh, Kyoung-Hwan (Department of Materials Science and Engineering, Chungnam National University)
Rhee, Sang-In (Department of Mechanical Design, Daeduk College)
Suhr, Dong-Soo (Department of Materials Science and Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.23, no.4, 2013 , pp. 219-226 More about this Journal
Abstract
Activated magnetite ($Fe_3O_{4-{\delta}}$) has the capability of decomposing $CO_2$ proportional to the ${\delta}$-value at comparatively low temperature of $300^{\circ}C$. To enhance the $CO_2$ decomposition capability of $Fe_3O_{4-{\delta}}$, $(Fe_{1-x}Co_x)_3O_{4-{\delta}}$ and $(Fe_{1-x}Mn_x)_3O_{4-{\delta}}$ were synthesized and then reacted with $CO_2$. $Fe_{1-x}Co_xC_2O_4{\cdot}2H_2O$ powders having Fe to Co mixing ratios of 9:1, 8:2, 7:3, 6:4, and 5:5 were synthesized by co-precipitation of $FeSO_4{\cdot}7H_2O$ and $CoSO_4{\cdot}7H_2O$ solutions with a $(NH_4)_2C_2O_4{\cdot}H_2O$ solution. The same method was used to synthesize $Fe_{1-x}Mn_xC_2O_4{\cdot}2H_2O$ powders having Fe to Mn mixing ratios of 9:1, 8:2, 7:3, 6:4, 5:5 with a $MnSO_4{\cdot}4H_2O$ solution. The thermal decomposition of synthesized $Fe_{1-x}Co_xC_2O_4{\cdot}2H_2O$ and $Fe_{1-x}Mn_xC_2O_4{\cdot}2H_2O$ was analyzed in an Ar atmosphere with TG/DTA. The synthesized powders were heat-treated for 3 hours in an Ar atmosphere at $450^{\circ}C$ to produce activated powders of $(Fe_{1-x}Co_x)_3O_{4-{\delta}}$ and $(Fe_{1-x}Mn_x)_3O_{4-{\delta}}$. The activated powders were reacted with a mixed gas (Ar : 85 %, $CO_2$ : 15 %) at $300^{\circ}C$ for 12 hours. The exhaust gas was analyzed for $CO_2$ with a $CO_2$ gas analyzer. The decomposition of $CO_2$ was estimated by measuring $CO_2$ content in the exhaust gas after the reaction with $CO_2$. For $(Fe_{1-x}Mn_x)_3O_{4-{\delta}}$, the amount of $Mn^{2+}$ oxidized to $Mn^{3+}$ increased as x increased. The ${\delta}$ value and $CO_2$ decomposition efficiency decreased as x increased. When the ${\delta}$ value was below 0.641, $CO_2$ was not decomposed. For $(Fe_{1-x}Co_x)_3O_{4-{\delta}}$, the ${\delta}$ value and $CO_2$ decomposition efficiency increased as x increased. At a ${\delta}$ value of 0.857, an active state was maintained even after 12 hours of reaction and the amount of decomposed $CO_2$ was $52.844cm^3$ per 1 g of $(Fe_{0.5}Co_{0.5})_3O_{4-{\delta}}$.
Keywords
iron oxalate; $(Fe_{1-x}Mn_x)_3O_{4-{\delta}}$ and $(Fe_{1-x}Co_x)_3O_{4-{\delta}}$; activated magnetite; ${\delta}$-value; $CO_2$ decomposition;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 D. S. Ryu, D. S. Lee, P. H. Lee, and S. T. Kim, J. Kor. Cerm. Soc., 37(6), 559 (2000) (in Korean).
2 W. S. Park, K. H. Oh, S. J. Ahn and D. S. Shur, J. Mater. Res., 22(5), 253-258 (2012) (in Korean).
3 K. H. Oh, W. S. Park, S. I. Rhee and D. S. Shur, J. Mater. Res., 22(11), 620-625 (2012) (in Korean).
4 V. Carles, P. Alphonse, P. Tailhades, and A. Rousset, Thermochimica acta, 334, 107-113 (1999).   DOI   ScienceOn
5 R. Majumdar, P. Sarkar, U. Ray, and M. R. Mukhopadhyay, Thermochimica acta, 335, 43-53 (1999).   DOI   ScienceOn
6 M. A. Mohamed, A. K. Galwey, and S. A. Halawy, Thermochimica acta, 429, 57-72 (2005).   DOI   ScienceOn
7 B. V. L'vov, Thermochimica acta, 364, 99-109 (2000).   DOI   ScienceOn
8 Y. Tamaura, Energy Conversion & Management, 33, 195-198 (1992).
9 T. Kodama, Y. Kitayama, M. Tsuji and Y. Tamaura,, Energy, 22(2,3), 183-187 (1997).   DOI   ScienceOn
10 K. Nishizawa, T. Kodama, M. Tabata, T. Yoshida and Y. Tamaura, Ferrites, 239-241, T. Yamaguchi, M. Abe, Japan Society of Powder and Metallurgy, Tokyo and Kyoto (1992).
11 Y. Wada, T. Yoshida, M. Tsuj.I and Y. Tamaura, Energy Convers. Mg mr, 36(6), 641(1995).   DOI   ScienceOn
12 T. Kodama, Y. Wada, T. Yamamoto, M. Tsuji and Y. Tamaura, Materidr Raurcb Bulletin, 30(8), 1039-1048 (1995).   DOI   ScienceOn
13 T. Kodama, M. Tabata, T. Sano, M. Tsuji and Y. Tamaura, Journal of Solid State Chemistry, 120, 64-69 (1995).   DOI   ScienceOn
14 T. Sano, T. Togawa, M. Kojima, M. Tsuji and Y. Tamaura, Energy, 21(5), 377-384 (1996).   DOI   ScienceOn
15 K. S. Lin, A. K. A, Adhikari, Z. Y. Tsai, Y. P. Chen, T. T. Chien, and H. B. Tsai, Catalysis Today, 174, 88-96 (2011).   DOI   ScienceOn
16 L. J. Ma, L. S. Chen, and S. Y. Chen, Solid State Sciences, 11, 176-181 (2009).   DOI   ScienceOn
17 C. L. Zhang, S. Li, L. J. Wang, T. H. Wu and S.Y. Peng, Materials 11. Chemistry and Physics, 62, 44-51 (2000).   DOI   ScienceOn
18 H. C. Shin, C. Kim, J. C. Choi, M. Tsuji, and S. C. Choi, J. Kor. Soc., 8(1), 137(1999) (in Korean).