Browse > Article
http://dx.doi.org/10.4191/KCERS.2010.47.2.199

Fabrication of a MnCo2O4/gadolinia-doped Ceria (GDC) Dual-phase Composite Membrane for Oxygen Separation  

Yi, Eun-Jeong (School of Materials Science and Engineering, Inha University)
Yoon, Mi-Young (School of Materials Science and Engineering, Inha University)
Moon, Ji-Woong (Research Institute of Industrial Science & Technology)
Hwang, Hae-Jin (School of Materials Science and Engineering, Inha University)
Publication Information
Abstract
A dual-phase ceramic membrane consisting of gadolinium-doped ceria (GDC) as an oxygen ion conducting phase and $MnCo_2O_4$ as an electron conducting phase was fabricated by sintering a GDC and $MnCo_2O_4$ powder mixture. The $MnCo_2O_4$ was found to maintain its spinel structure at temperatures lower than $1200^{\circ}C$. (Mn,Co)(Mn,Co)$O_4$ spinel, manganese and cobalt oxides formed in the sample sintered at $1300^{\circ}C$ in an air atmosphere. XRD analysis revealed that no reaction phases occurred between GDC and $MnCo_2O_4$ at $1200^{\circ}C$. The electrical conductivity did not exhibit a linear relationship with the $MnCo_2O_4$ content in the composite membranes, in accordance with percolation theory. It increased when more than 15 vol% of $MnCo_2O_4$ was added. The oxygen permeation fluxes of the composite membranes increased with increasing $MnCo_2O_4$ content and this can be explained by the increase in electrical conductivity. However, the oxygen permeation flux of the composite membranes appeared to be governed not only by electrical conductivity, but also by the microstructure, such as the grain size of the GDC matrix.
Keywords
Oxygen separation; Perovskite; $MnCo_2O_4$; GDC; Composite;
Citations & Related Records

Times Cited By SCOPUS : 2
연도 인용수 순위
1 C. Wagner, “Theory of tarnishing process,” Z. Phys. Chem., B21 25-41 (1933).
2 K. Wiik, S. Aasland, H. L. Hansen, I. L. Tangen, and R. Odegard, “Oxygen Permeation in the System $SrFeO_{3-x}-SrCoO_{3-y}$,” Solid State Ionics, 152-53 675-80 (2002).   DOI
3 I. Kagomiya, T. Iijima, and H. Takamura, “Oxygen Permeability of Nanocrystalline Ce_{0.8}Gd_{0.2}O_{1.9}-CoFe_2O_4$ Mixed-conductive Films,” J. Membrane Sci., 286 180-84 (2006).   DOI
4 C. S. Chen, H. Kruidhof, H. J. M. Bouwmeester, H. Verweij, and A. J. Burggraaf, “Oxygen Permeation Through Oxygen Ion Oxide-noble Metal Dual Phase Composites,” Solid State Ionics, 86-8 569-72 (1996).   DOI
5 Y. Teraoka, H. M. Zhang, S. Furukawa, and N. Yamazoe, “Oxygen Permeation Through Perovskite-type Oxides,” Chem. Lett., 14 1743-46 (1985).   DOI
6 P. N. Dyer, R. E. Richards, S. L. Russek, and D. M. Taylor, “Ion Transport Membrane Technology for Oxygen Separation and Syngas Production,” Solid State Ionics, 134 21-33 (2000).   DOI   ScienceOn
7 T. Ishihara, Y. Tsuruta, T. Todaka, H. Nishiguchi, and Y. Takita, “Fe Doped $LaGaO_3$ Perovskite Oxide as an Oxygen Separating Membrane for $CH_4$ Partial Oxidation,” Solid State Ionics, 152 709-14 (2002).
8 Y. Zeng and Y. S. Lin, “Stability and Surface Catalytic Properties of Fluorite-structured Yttria-doped Bismuth Oxide under Reducing Environment,” J. Catal., 182 30-6 (1999).   DOI
9 O. Buchler, J. M. Serra, W. A. Meulenberg, D. Sebold, And H. P. Buchkremer, “Preparation and properties of thin $La_{1-x}Sr_xCo_{1-y}Fe_yO_{3-\delta}$ Perovskitic Membranes Supported on Tailored Ceramic Substrates,” Solid State Ionics, 178 90-9 (2007).
10 Z. Wu and M. Liu, “Modeling of Ambipolar Transport Properties of Composite Mixed Ionic-electronic Conductors,” Solid State Ionics, 93 65-84 (1997).   DOI
11 T. J. Mazanec, T. L. Cable, and J. G. Frye, “Electrocatalytic Cells for Chemical Reaction,” Solid State Ionics, 53-6 111-18 (1992).   DOI
12 J. Kim and Y. S. Lin, “Synthesis and Oxygen Permeation Properties of Ceramic-metal Dual-phase Membranes,” J. Membrane Sci., 167 123-33 (2000).   DOI
13 Y. Y. Liu and L. Hong, “Fabrication and characterization of $(Pd/Ag)-La_{0.2}Sr_{0.8}CoO_{3-\delta}$ Composite Membrane on Porous Asymmetric Substrates,” J. Membrane Sci., 224 137-50 (2003).   DOI
14 H. Takamura, T. Kobayashi, T. Kasahara, and A. Kamegawa, M. Okada, “Oxygen Permeation and Methane Reforming Properties of Ceria-based Composite Membranes,” J. Alloys and Compounds, 408-12 1084-89 (2006).   DOI
15 A. Petric and H. Ling, “Electrical Conductivity and Thermal Expansion of Spinels at Elevated Temperatures,” J. Am. Ceram. Soc., 90 1515-20 (2007).   DOI
16 Q. Li, X. Zhu and W. Yang, “Single-step Fabrication of Asymmetric Dual-phase Composite Membranes for Oxygen Separation,” J. Membrane Sci., 325 11-5 (2008).   DOI
17 E. Rios, J. -L. Gautier, G. Poillerat, and P. Chartier, “Mixed Valency Spinel Oxides of Transition Metals and Electrocatalysis: Case of the $Mn_xCo_{3-x}O_4$ System,” Electrochimica Acta, 44 1491-97 (1998).   DOI
18 E. Aukrust and A. Muan, “The Stabilities of $CoO.Al_2O_3$, $CoO.Cr_2O_3$, and $2CoO.SiO_2$, J. Am. Ceram. Soc., 46 358-360 (1963).   DOI
19 V. V. Kharton, A. V. Kovalevsky, A. A. Taremchenko, F. M. Fiqueiredo, E. N. Naumovich, A. L. Shaulo, and F. M. B. Marques, “Surface Modification of $La_{0.3}Sr_{0.7}CoO_{3-\delta}$ Ceramic Membranes,” J. Membrane Sci., 195 277-87 (2002).   DOI
20 V. V. Kharton , F. M. Fiqueiredo, A. V. Kovalevsky, A. P. Viskup, E. N. Naumovich, A. A. Yaremchenko, I.A. Bashmakov, and F. M. B. Marques, “Processing, Microstructure and Properties of $LaCoO_{3-\delta}$ Ceramics,” J. Euro. Ceram. Soc., 21 2301-09 (2001).   DOI
21 Y. S. Lin, W. J. Wang, and J. H. Han, “Oxygen Permeation Through Thin Mixed-conducting Solid Oxide Membranes,” AIChE Journal, 40 786-98.   DOI