Article

Mn-Cu/Al₂O₃ 촉매 상에서 NO, CO 및 CH₄ 동시 산화

· 정지은 · 이창용[†]

공주대학교 환경공학과 (2023년 9월 15일 접수, 2023년 10월 1일 수정, 2023년 10월 10일 채택)

Simultaneous Oxidation of NO, CO, and CH₄ over Mn-Cu/Al₂O₃ Catalyst

Ji Eun Jeong and Chang-Yong Lee[†]

Department of Environmental Engineering, Kongju National University, Cheonan 31080, Korea (Received September 15, 2023; Revised October 1, 2023; Accepted October 10, 2023)

초 특

NO, CO 및 CH₄의 동시 산화를 위한 4 종의 Mn-M/Al₂O₃ (M = Cu, Fe, Co, Ce) 촉매를 제조하여 산화 활성을 비교하고, 동시 산화활성이 가장 높은 Mn-Cu/Al₂O₃ 촉매에 대해 XRD, Raman, XPS, O₂-TPD 분석을 수행하였다. XRD 분석 결과, Mn-Cu/Al₂O₃ 촉매에서는 담지된 Mn과 Cu는 복합산화물로 존재하였다. Raman 및 XPS 분석을 통해 Mn-Cu/Al₂O₃ 촉매 는 Mn-O-Cu 결합의 형성 과정에서 Mn 이온과 Cu 이온 간의 전자 수수가 일어남을 알 수 있었다. XPS O Is 및 O₂-TPD 분석을 통해 Mn-Cu/Al₂O₃ 촉매는 Mn/Al₂O₃ 촉매에 비해 이동성이 우수한 흡착산소 종이 증가했음을 알 수 있었다. Mn-Cu/Al₂O₃ 촉매의 높은 동시 산화 활성은 이러한 결과에 기인한다고 판단된다. Mn-Cu/Al₂O₃ 촉매 상에서 NO는 CO 와 CH₄ 산화를 촉진하지만, NO 산화는 억제되었다. 이는 NO로부터 산화된 NO₂가 CO 및 CH₄의 산화제로 사용되었기 때문이라고 추측된다. CO와 CH₄의 산화 반응은 경쟁하지만 촉매 활성 온도가 다르기 때문에 그 효과가 두드러지지 않았다.

Abstract

Mn-M/Al₂O₃ (M = Cu, Fe, Co, and Ce) catalysts were prepared for simultaneous oxidation of NO, CO, and CH₄, and their oxidation activities were compared. The Mn-Cu/Al₂O₃ catalyst with the best simultaneous oxidation activity was characterized by XRD, Raman, XPS, and O₂-TPD analysis. The result of XRD indicated that Mn and Cu existed as complex oxides in the Mn-Cu/Al₂O₃ catalyst. Raman and XPS results showed that electron transfer between Mn ions and Cu ions occurred during the formation of the Mn-O-Cu bond in the Mn-Cu/Al₂O₃ catalyst. The XPS O 1s and O₂-TPD analyses showed that the Mn-Cu/Al₂O₃ catalyst has more adsorbed oxygen species with high mobility than the Mn/Al₂O₃ catalyst. The high simultaneous oxidation activity of the Mn-Cu/Al₂O₃ catalyst is attributed to these results. Gas-phase NO promotes the oxidation reactions of CO and CH₄ in the Mn-Cu/Al₂O₃ catalyst while suppressing the NO oxidation reaction. These results were presumed to be because the oxidized NO was used as an oxidizing agent for CO and CH₄. On the other hand, the oxidation reactions of CO and CH₄ competed on the Mn-Cu/Al₂O₃ catalyst, but the effect was not noticeable because the catalyst activation temperature was different.

Keywords: Simultaneous oxidation, NO, CO, CH₄, Mn-Cu/Al₂O₃

1. 서 론

복합화력발전은 낮은 초기 설치 비용과 높은 효율을 가지며, 천연 가스를 주 연료로 사용하기 때문에 석탄화력 발전에 비해 청정에너지 로 인식되어 해마다 발전 비중이 증가되고 있다[1,2]. 이에 따라 복합 화력발전에 의한 대기오염 기여도가 증가할 것으로 예상되며, 정부는 LNG 발전시설의 배출되는 대기오염물질에 대해 지속적으로 강화된

[†] Corresponding Author: Kongju National University Department of Environmental Engineering, Cheonan 31080, Korea Tel: +82-41-521-9421 e-mail: cylee@kongju.ac.kr 규제를 적용하고 있다. LNG 발전은 첨두 부하(peak load)용으로 건설 되기 때문에 설비의 정지 및 기동이 빈번하다[3,4]. 이때 불완전 연소 로 인해 일산화탄소(CO)와 총 탄화수소(THC)가 다량 발생하여 굴뚝 으로 배출될 뿐 아니라 고농도의 질소산화물(NOx) 배출로 황연현상 (yellow plume phenomenon)이 발생한다[2]. 일반적으로 LNG 발전의 정상가동 시 배출되는 NOx 제거를 위해 선택적 촉매환원(SCR, selective catalytic reduction) 기술이 사용되며, 300~400 °C의 활성 온도 를 가진다[5]. 하지만 정지/기동 시 발생하는 NOx 저감을 위해서는 SCR의 저온활성(150~250 °C)이 요구된다. 이에 대응할 수 있는 기술 로서 fast SCR 반응은 NO와 NO₂의 농도가 동일할 때 기존 SCR보다 반응속도가 빨라져 저온에서도 높은 탈질 효율을 가진다[6,7]. Fast SCR 반응을 유도하기 위해서는 SCR 공정 전단계에 산화 촉매를 이

pISSN: 1225-0112 eISSN: 2288-4505 @ 2024 The Korean Society of Industrial and Engineering Chemistry. All rights reserved.

용하여 NO 일부를 NO₂로 산화시키는 공정이 필요하다. 이 때 산화 촉매는 저온에서 고농도로 발생하는 CO와 THC도 함께 산화시켜 인 체에 무해한 CO₂와 수증기로 배출시킬 수 있는 장점이 있다.

지금까지 촉매산화 반응에 많이 연구된 촉매는 Pt, Rh, Pd 등의 귀 금속계 및 전이금속계로 구분된다[8-10]. 귀금속계 촉매는 낮은 온도 에서 높은 촉매 활성을 보이지만 귀금속의 희소성 및 높은 가격으로 사용이 매우 제한적이다. 따라서 저가이면서 귀금속 촉매와 유사한 활성을 나타내는 Mn, Cu, Ce 등의 비귀금속계 촉매에 대한 연구가 주 목받아왔다. 이 중 망간산화물은 다가의 금속 이온 상태(Mn²⁺, Mn³⁺, Mn⁴⁺) 및 풍부한 활성 산소 종으로 우수한 산화 및 환원 활성을 나타 낸다[11,12]. 이러한 망간산화물 촉매의 활성을 더욱 증진하기 위한 방법으로서 다양한 금속산화물과 혼합한 망간기반 복합산화물 촉매 에 대한 연구가 많이 진행되어 왔다. Mn-Cu, Mn-Ce, Mn-Fe, Mn-Co/ CeO2 등의 다양한 복합산화물 촉매를 이용한 연구들에서 망간 이온 과 금속 이온 간의 상호작용에 기인하여 우수한 촉매 활성을 나타냈 다고 보고하였다[11,13-15]. 하지만 Al2O3를 지지체로 사용한 망간기 반 복합산화물 촉매들의 NO, CO 및 CH4의 동시 산화에 미치는 영향 에 대한 연구는 미비하다. 따라서 본 연구에서는 NO, CO 및 CH4의 동시 산화를 위해 Al₂O₃에 담지한 Mn-M (M=Cu, Ce, Fe, Co) 산화물 촉매를 제조하고 산화 활성을 비교하였다. 이들 촉매 중 가장 산화 활 성이 우수한 촉매에 대해 XRD, Raman, XPS, O2-TPD 등의 분석을 수 행하여 물리화학적 특성을 조사하였다. 아울러 촉매 상에서 NO, CO 및 CH4 가스가 각 산화 반응에 미치는 영향에 대해 알아보았다.

2.실 험

2.1. 시료

본 연구에서 사용된 γ-Al₂O₃ 담지 Mn-M 산화물 촉매는 습윤 함침 법으로 제조하였다. Mn과 함께 활성 금속물질로 Cu, Ce, Fe, Co 등을 선택하였으며, 각 물질의 전구 물질로는 Mn(NO₃)₂·4H₂O (Sigma-Aldrich, 97%), Cu(NO₃)₂·2.5H₂O (Sigma-Aldrich, 98%), Ce(NO₃)₃·6H₂O (Sigma-Aldrich, 99%), Fe(NO₃)₃·9H₂O (Sigma-Aldrich, 99%), Co(NO₃)₂·6H₂O (Sigma-Aldrich, 98%)을 사용하였다. 망간 및 활성 금속산화물은 지지 체에 각각 9 wt%와 3 wt%로 담지될 수 있는 양으로서 두 전구물질을 증류수에 용해시킨 후, γ-Al₂O₃ (Sigma-Aldrich)에 공침하였다. 이 후 110 ℃ 오븐에서 12 hr 동안 건조한 다음 550 ℃에서 5 hr 동안 공기 로 소성하여 Mn-M/Al₂O₃ 촉매들을 제조하였다. 이들 촉매들은 Mn-Cu/Al₂O₃, Mn-Ce/Al₂O₃, Mn-Fe/Al₂O₃, Mn-Co/Al₂O₃ 등으로 표시 하였다. 또한 9 wt% Mn, 3 wt% Cu 단일물질 담지 촉매도 같은 방법 으로 제조하였으며 Mn/Al₂O₃, Cu/Al₂O₃로 표시하였다.

2.2. 특성 분석

제조한 촉매들의 결정 구조를 확인하기 위해 X-ray diffraction (Rigaku, MiniFlex 600) 분석을 수행하였다. 단일 및 이종 담지 촉매의 구조적 특성을 알아보기 위해 Raman spectroscopy (Horiba, LabRAM HR Evolution Visible_NIR) 분석을 수행하였다. 활성 금속의 산화 상 태를 확인하기 위해 XPS (Shimadzu, Kratos AXIS Nova) 분석을 수행 하였다. 제조한 촉매들의 O₂ 흡착능을 평가하기 위해 O₂-TPD 분석을 수행하였다. 반응기에 1.5 g의 촉매를 충진하고 400 °C에서 N₂로 전 처리하여 촉매 내 수분을 제거하였다. 이 후, 50 °C에서 공기(21% O₂, 79% N₂)를 공급하면서 1 hr 동안 촉매에 O₂를 흡착시켰다. 이후 상온 에서 N₂로 30 min 동안 퍼징하여 물리 흡착된 O₂를 제거하였다. O₂-TPD 분석은 N₂를 30 cc/min로 주입하면서 10 °C/min의 승온 속도 로 820 °C까지 승온하면서 GC-TCD (Shimadzu, GC 2014)로 반응물 의 탈착랑을 측정하였다.

2.3. 반응 실험

제조된 촉매의 NO, CO 및 CH₄의 동시 산화 활성을 평가하기 위한 실험 장치도를 Figure 1에 나타내었다. 실험 장치는 가스주입 장치, 촉 매 반응기, 가스분석 장치로 구성된다. 반응기에 주입되는 가스는 MFC (Mass Flow Controller. Brooks)를 이용하여 200 ppm NO, 1000 ppm CO, 1000 ppm CH₄, 10% O₂, N₂ balance로 조절되었다. 수분 공 급은 O₂가 물이 충진되어 있는 버블러를 통과시켜 10%의 수분을 함 유하도록 하였다. 가스의 총 유량은 800 ml/min로 유지되어 반응기로 유입되며, 공간 속도는 15000 hr⁻¹로 고정하였다. 촉매는 50-70 mesh 크기로 체거름한 다음 직경 25 mm, 높이 250 mm의 석영반응기 내 석영 솜으로 고정하였다. 반응기의 온도는 150~500 °C 범위에서 50 °C 간격으로 승온하였으며, 각 온도에서 30 min 이상 유지한 다음 가 스 농도를 측정하였다. 반응가스 분석을 위해 반응기를 통과한 가스 들을 냉각 트랩에 통과시켜 수분을 제거하고 분석기에 주입되었다.

Figure 1. The schematic diagram of experimental equipment.

Figure 2. Catalytic oxidation of CO (a), NO (b), and CH₄ (c) over Mn/Al_2O_3 and $Mn-M/Al_2O_3$ catalysts as a function of reaction temperature.

NO 및 CO 농도는 Flue gas analyzer (Ecom, MK3000, Germany)을 이 용하고, CH₄ 농도는 GC-FID (Shimazu, GC 2010)를 이용하여 분석하 였다.

3. 결과 및 고찰

3.1. Mn/Al₂O₃ 및 Mn-M/Al₂O₃ 촉매의 CO, NO 및 CH₄의 동시 선화 Mn/Al₂O₃ 촉매와 4 종의 Mn-M/Al₂O₃ 촉매들의 CO, NO 및 CH₄ 동 시 산화 활성 결과를 각각 Figure 2A, 2B, 2C에 나타내었다. CO 산화 활성은 반응온도 전 구간에서 Mn-Co/Al₂O₃ < Mn-Fe/Al₂O₃ < Mn-Ce/ Al₂O₃ < Mn/Al₂O₃ < Mn-Cu/Al₂O₃ ć으로 나타났고, NO 산화 활성은 250~350 °C에서 Mn-Co/Al₂O₃ < Mn-Fe/Al₂O₃ < Mn/Al₂O₃ < Mn-Ce/ Al₂O₃ < Mn-Cu/Al₂O₃ < Mn-Fe/Al₂O₃ < Mn/Al₂O₃ < Mn-Ce/ Al₂O₃ < Mn-Cu/Al₂O₃ ć으로 나타났다. Figure 3은 Figure 2A와 2B의 CO 및 NO 전환율 그래프로부터 산출한 T₅₀ (전환율 50%의 반응 온 도)이다. 5 종의 촉매 가운데 Mn-Cu/Al₂O₃ 촉매가 가장 높은 CO 및 NO 산화 활성을 보였으며, 특히 CO 산화 활성이 매우 우수하였다. 한편 Figure 2C에 나타냈듯이 5 종 촉매 모두 400 °C 이하에서 CH₄ 산화 활성이 없었으며, 500 °C에서조차 Mn-Cu/Al₂O₃ 촉매의 CH₄ 산 화율이 30% 정도에 불과하였다.

Figure 4는 Mn/Al₂O₃ 촉매와 4 종의 Mn-M/Al₂O₃ 촉매들의 XRD 회 절도이다. Figure 4(a)의 Mn/Al₂O₃ 촉매의 XRD 회절도에서는 γ -Al₂O₃, MnO₂ 및 Mn₂O₃ 등의 결정 피크가 나타났다. Figure 4(b), (c), (d)의 Mn-Fe/Al₂O₃, Mn-Co/Al₂O₃, Mn-Ce/Al₂O₃ 촉매들의 XRD 회절 도에서는 MnO₂ 및 Mn₂O₃와 공침 금속의 산화물인 Fe₂O₃, Co₃O₄,

Mn/Al₂O₃ Mn-Co/Al₂O₃ Mn-Fe/Al₂O₃ Mn-Ce/Al₂O₃ Mn-Cu/Al₂O₃

Figure 3. Temperatures for 50% conversion (T_{50}) for Mn/Al_2O_3 and $Mn-M/Al_2O_3$ catalysts.

Figure 4. XRD patterns of Mn/Al_2O_3 and $Mn-M/Al_2O_3$ catalysts: (a) Mn/Al_2O_3 , (b) $Mn-Fe/Al_2O_3$, (c) $Mn-Co/Al_2O_3$, (d) $Mn-Ce/Al_2O_3$, (e) $Mn-Cu/Al_2O_3$.

CeO₂에 해당하는 결정 피크를 볼 수 있다. 이는 Mn과 함께 담지된 Fe, Co, Ce 등은 지지체 결정 표면에서 각각의 산화물 상태로 존재함 을 의미한다. 반면 Figure 4(e)의 Mn-Cu/Al₂O₃ 촉매의 XRD 회절도에 서는 Mn 산화물과 Cu 산화물의 결정 피크가 확인되지 않았다. 이는

Figure 5. Raman spectra of catalysts. (a) Mn/Al_2O_3 , (b) Cu/Al_2O_3 , (c) $Mn-Cu/Al_2O_3$.

Mn-Cu/Al₂O₃ 촉매의 경우에는 담지 물질이 무정형의 Mn-Cu 복합산 화물로서 존재하는 것으로 추측된다. 기존 연구에 의하면 Mn-Cu 공 침 산화물 촉매에서는 Mn과 Cu 결합 간의 전자 이동으로 촉매 활성 이 향상되는 것으로 보고된다[16,17]. 따라서 Figure 2에서 보여준 바 와 같이 Mn-Cu/Al₂O₃ 촉매가 가장 우수한 동시 산화 활성을 갖는 것 은 생성된 Mn-Cu 복합산화물에 기인한다고 판단된다. Mn-Cu/Al₂O₃ 촉매를 제외한 다른 3 종의 Mn-M/Al₂O₃ 촉매들 특히 Mn-Fe/Al₂O₃과 Mn-Co/Al₂O₃ 촉매들의 낮은 CO 및 NO 산화 활성은 Mn-Fe 및 Mn-Co 복합산화물의 생성이 거의 생성되지 않았기 때문으로 볼 수 있다.

3.2. Mn-Cu/Al₂O₃ 촉매의 특성분석

4 종의 Mn-M/Al₂O₃ 촉매들 가운데 산화 활성이 가장 우수한 Mn-Cu/Al₂O₃ 촉매에서 Mn과 Cu의 결합 구조를 알아보기 위해 Raman 분석을 수행하고 Figure 5에 나타내었다. Figure 5(a)의 Mn/Al₂O₃ 촉매의 Raman 스펙트럼에서는 MnO₂ 및 Mn₂O₃ 구조에 기 인한 Mn-O 결합 밴드가[18-20] 각각 531 cm⁻¹와 214, 653, 699 cm⁻¹에 서 나타났다. 이러한 Mn/Al2O3 촉매에 대한 Raman 분석 결과는 앞서 XRD 분석 결과와 일치하였다. Figure 5(b)의 Cu/Al₂O₃ 촉매의 Raman 스펙트럼 경우에는 Raman 신호가 나타나지 않았다. Figure 5(c)의 Mn-Cu/Al₂O₃ 촉매의 Raman 스펙트럼은 Mn/Al₂O₃ 촉매와 달리 넓은 단일 밴드 형태를 보였으며, Mn-O 결합 밴드는 516 cm⁻¹와 647 cm⁻¹ 에서 나타났다. Mn-Cu/Al2O3 촉매에서 Mn-O 결합 밴드의 파수(wave number)가 Mn/Al2O3 촉매와 비교하여 다소 작아진 것은 Mn-O 결합 길이의 변화에 기인할 수 있다[21]. Fan 등[11]은 Mn 원자보다 반경이 작은 Cu 원자가 Mn 산화물 격자에 삽입되어 Mn-O-Cu 구조가 생성된 다고 보고하였다. 따라서 Mn-Cu/Al2O3 촉매의 스펙트럼에서 볼 수 있 는 넓고 커다란 밴드는 Mn과 Cu가 함께 담지되면서 생성된 Mn-Cu 복합산화물의 Mn-O-Cu 결합과 관련된다고 판단된다.

Mn-Cu/Al₂O₃ 촉매와 Mn/Al₂O₃ 및 Cu/Al₂O₃ 촉매에 대한 XPS 분석 결과를 Figure 6에 나타내었다. Figure 6A에서 Mn/Al₂O₃ 촉매의 Mn 2p_{3/2} 결합에너지 피크는 Mn³⁺ (641.1 eV) 피크와 Mn⁴⁺ (643.6 eV) 피 크로[17,22] 분리되었다. Mn-Cu/Al₂O₃ 촉매에서 Mn 2p_{3/2} 결합에너지 는 Mn/Al₂O₃ 촉매에 비해 약간 증가했으며, 그 결과 Mn 2p_{3/2} 결합에 너지는 641.7 (Mn³⁺)와 643.9 eV (Mn⁴⁺)로 분리되었다. Figure 6B의

Figure 6. XPS spectra of Mn/Al_2O_3 , Cu/Al_2O_3 , and $Mn-Cu/Al_2O_3$ catalysts: (a) Mn 2p, (b) Cu 2p, and (c) O 1s.

Table 1. Different Valence States of $Mn/Al_2O_3,\ Cu/Al_2O_3,\ and Mn-Cu/Al_2O_3$ Catalysts

Percentage of valence states / %	Mn/Al ₂ O ₃	Cu/Al ₂ O ₃	Mn-Cu/Al ₂ O ₃
Mn^{4+}/Mn_{total}	18.8	-	27.5
Cu ⁺ /Cu total	-	9.7	73.4
O_{ads}/O_{total}	17.0	26.7	36.4

Cu/Al2O3 촉매에서 Cu 2p3/2와 2p1/2의 결합에너지는 각각 933.4와 953.2 eV로서 둘 다 Cu²⁺를 나타낸다. 반면, Mn-Cu/Al₂O₃ 촉매에서는 Cu²⁺에 해당하는 피크는 감소하는 대신, Cu⁺에 해당하는 피크가 931.4 와 951.1 eV에서[11] 나타났다. Figure 6C의 O 1s 결합에너지 피크는 3 촉매 모두에서 격자 산소(Olattice) 피크와 표면 흡착산소(Oads) 피크로 [22] 분리되었다. Table 1은 Figure 6의 XPS 스펙트럼을 통해 얻은 각 원자의 산화 상태별 비율을 표시한 것이다. Mn-Cu/Al2O3 촉매는 Mn/Al₂O₃ 또는 Cu/Al₂O₃ 촉매에 비해 Mn⁴⁺ 및 Cu⁺ 비율이 증가하였 다. Xuen 등[23]에 따르면 Mn-Cu 촉매에서 MnCuOx 고용체의 형성 및 Mn과 Cu의 전자 이동이 존재한다고 보고하였다. 이에 따라 Mn-Cu/Al₂O₃ 촉매는 Mn-Cu 복합산화물이 생성되는 과정에서 Mn³⁺ 와 Cu²⁺ 사이 전자의 수수가 일어남을 유추할 수 있다. 또한 Table 1을 보면 Mn-Cu/Al2O3 촉매는 Mn/Al2O3 및 Cu/Al2O3 촉매에 비해 흡착산 소 종의 비율이 크게 증가하였다. Mn 이온과 Cu 이온은 이온 반경과 전하가 일치하지 않기 때문에 Mn-O-Cu 결합이 형성되는 과정에서 전 하 불균형과 산소 공석이 발생할 수 있다[17,23]. 결국 Mn-Cu/Al₂O₃ 촉매에서는 촉매 제조 시 생성되는 Mn-Cu 복합산화물의 Mn-O-Cu 격 자 구조에서 산소 공석이 형성된다고 판단된다. 이러한 산소 공석은 기체 산소분자의 흡착을 촉진함으로서 촉매표면 흡착산소 종을 증가 시키고 촉매 활성을 향상시킬 수 있다.

Mn-Cu/Al₂O₃ 촉매 내 활성 산소 종에 대해 자세히 알아보기 위해

Figure 7. The O₂-TPD profiles of catalysts. (a) Mn/Al₂O₃, (b) Cu/Al₂O₃, (c) Mn-Cu/Al₂O₃.

O2-TPD를 수행하고 그 결과를 Figure 7에 나타내었다. O2-TPD 프로 파일에서 탈착 피크는 물리흡착 산소(O2(ads)), 화학흡착 산소(O2(ads)), O⁻_(ads)), 격자 산소(O²⁻_(lattice)) 순서로 나타난다[24]. Figure 7을 보면 모 든 촉매에서 물리흡착 산소의 탈착 피크는 나타나지 않았다. 화학흡 착 산소의 탈착 피크는 Figure 7(a)의 Mn/Al2O3 촉매에서는 421, 551 °C에서 나타난 반면, Figure 7(b)의 Cu/Al₂O₃ 촉매에서는 탈착 피크가 거의 보이지 않았다. Figure 7(c)의 Mn-Cu/Al₂O₃ 촉매에서는 Mn/Al₂O₃ 촉매에 비해 100 ℃ 이상 낮은 308 ℃에서 탈착 피크가 출 현했으며, 화학흡착 산소의 탈착 피크 면적 즉 화학흡착 산소량도 Mn/Al2O3 촉매에 비해 크게 증가하였다. 이러한 O2-TPD 결과는 Mn-Cu/Al₂O₃ 촉매의 경우 Mn/Al₂O₃와 Cu/Al₂O₃ 촉매에 비해 산소가 쉽게 촉매 표면에서 탈착될 수 있을 뿐 아니라 표면 흡착산소 종이 더 많이 존재함을 의미하며 XPS 결과와 잘 일치하였다. 화학흡착 산 소 종은 산화 반응에 참여하기 쉽기 때문에 촉매 산화 반응에 중요한 영향을 미칠 수 있다[25,26]. 한편, Figure 7(c)를 보면 Mn-Cu/Al₂O₃ 촉매의 600 ℃ 이상에서 나타나는 격자 산소의 탈착량은 Mn/Al₂O₂와 Cu/Al₂O3 촉매에 비해 증가했지만, 높은 온도에 기인하여 150~500 ℃ 구간의 산화 반응에는 영향이 없었을 것으로 판단된다.

3.3. CO, NO 및 CH4이 다른 가스의 촉매 산화에 미치는 영향

CO, NO 및 CH4의 동시 촉매 산화에서 한 가스가 다른 가스의 산화 에 미치는 영향을 알아보기 위해 Mn-Cu/Al2O3 촉매 상에서 주입 가스 를 달리하면서 산화 반응을 수행하고 그 결과를 Figure 8에 나타내었 다. Figure 8A에 나타낸 CO 전환율은 150~200 ℃ 구간에서 주입 가 스의 종류에 따라 차이를 보였다. NO가 존재하면 CO 전환율은 10~22% point 증가했지만, CH4은 CO 전환율에 영향을 거의 미치지 못했다. 200 ppm의 NO와 1000 ppm의 CH4이 동시에 존재하면 CO 전 환율은 NO만 존재할 때와 비슷하게 향상되었다. 이러한 결과는 CO 촉매 산화에 NO가 미치는 영향이 매우 크다는 것을 의미한다. Figure 8B에 나타낸 NO 전환율은 150~300 ℃, 350~400 ℃, 450 ℃ 이상에 서 추가 유입 가스에 따라 다른 경향을 나타내었다. CO가 존재하면 NO 전환율은 150~300 ℃에서는 10~25% point 감소했지만, 350 ℃ 이상에서는 4~5% point 감소하였다. CH4이 존재하면 NO 전환율은 150~300 ℃에서는 2% point 정도 감소에 그친 반면, 350~400 ℃에서 는 10~12% point 그 이상에서는 4% point 정도 감소하였다. CO와 CH4이 동시에 존재하면 NO 전환율은 모든 온도 구간에서 CO만 존재

Figure 8. Influence of inlet gas component on conversions of CO (a), NO (b), and CH₄ (c) oxidation over Mn-Cu/Al₂O₃ catalysts.

할 때와 거의 비슷한 경향을 보였다. Figure 8C에서 보여주듯이 Mn-Cu/Al₂O₃ 촉매의 CH₄ 산화 활성은 400 °C 이상에서 나타나는데, CO가 존재하면 CH₄ 전환율은 CO가 존재할 때 3~4% point 감소하였 다. 반면, NO만 존재하거나 NO와 CO가 동시에 존재하는 경우 CH₄ 전환율은 거의 변화가 없었다.

Figure 8의 결과를 정리하면, Mn-Cu/Al2O3 촉매 상에서 NO의 존재 는 CO 산화 활성을 촉진하며, CO 및 CH4은 NO 산화 활성을 저하하 였다. Al-Harbi 등[27]은 NO 산화로 생성된 NO2는 산화성이 크기 때 문에 CO 및 HC를 산화시킨다고 보고하였다. 하지만 Figure 8C의 결 과처럼 NO에 의한 CH4 전환율의 증가는 미미했는데, 이는 CH4의 촉 매 산화 온도가 높아서 NO2에 의한 CH4 산화 반응이 활성화되지 못 했기 때문이라고 판단된다. 그럼에도 불구하고 Figure 8B의 결과처럼 CH4에 의한 NO 산화의 억제는 NO 산화 반응에 의해 생성된 NO2가 CH4에 의해 NO로 다시 환원되기 때문이라고 설명할 수 있다. 한편, CO와 CH₄의 경우 상대 산화 반응에 대한 억제 효과는 작지만 분명히 존재하였다. 이는 Mn-Cu/Al2O3 촉매 상에서 CO와 CH4 분자의 경쟁 반응이 존재하지만, CO와 CH4의 촉매 활성 온도가 다르기 때문에 그 효과가 크게 발현되지 않았다고 추측된다. 따라서 Mn-Cu/Al2O3 촉매 를 복합화력 발전의 기동/정지 시 fast SCR 반응을 유도하기 위한 산 화 촉매로 적용하기 위해서는 저온에서 CO에 의한 NO 산화 억제 효 과를 감소시키는 연구가 필요하다고 판단된다.

4. 결 론

Mn-Fe/Al₂O₃, Mn-Co/Al₂O₃, Mn-Ce/Al₂O₃, Mn-Cu/Al₂O₃ 등 Mn-M/

Al₂O₃ 촉매 4 종과 Mn/Al₂O₃ 촉매를 제조하고 NO, CO 및 CH₄의 동 시 산화 활성을 비교하고, 동시 산화 활성이 가장 높은 Mn-Cu/Al₂O₃ 촉매에 대해 특성 분석하였다. 아울러 Mn-Cu/Al₂O₃ 촉매 상에서 NO, CO 및 CH4 가스가 다른 가스의 산화에 미치는 영향을 알아보고 다음 과 같은 결론을 얻었다. 5 종의 촉매들 가운데 Mn-Cu/Al2O3 촉매가 CO, NO 및 CH4 산화 모두 가장 높은 활성을 나타내었다. 5 종의 촉 매들의 XRD 분석 결과, Mn-Cu/Al2O3 촉매는 담지한 금속들의 복합 산화물이 존재하였다. Mn-Cu/Al2O3 촉매의 Raman 분석 결과, Mn-O 결합에 기인하는 라만 신호가 Mn/Al₂O₃ 촉매에 비해 크게 달라졌는 데 이는 Mn-Cu 복합산화물의 Mn-O-Cu 결합 형성과 관련한다고 판단 된다. XPS 분석 결과, Mn-Cu/Al₂O₃ 촉매는 Mn/Al₂O₃ 촉매에 비해 Mn⁴⁺ 비율이 증가하고 Cu/Al₂O₃ 촉매에 비해 Cu⁺ 비율이 증가하였다. 이는 Mn-Cu 복합산화물 생성 과정에서 Mn 이온과 Cu 이온 간의 전 자 수수가 일어났다고 판단된다. 또한 XPS O 1s 분석 및 O2-TPD 분 석 결과, Mn-Cu/Al₂O₃ 촉매의 흡착산소 좋은 Mn/Al₂O₃ 촉매에 비해 크게 증가하였다. 이러한 결과들로부터 Mn-Cu/Al₂O₃ 촉매의 높은 산 화 활성은 산화 반응 참여가 용이한 흡착산소 종이 많음에 기인한다 고 볼 수 있다. Mn-Cu/Al2O3 촉매 상에서 주입 가스를 달리하면서 NO, CO, CH4의 동시 산화 반응을 실시한 결과, NO는 CO 및 CH4 산 화를 촉진하는 반면 NO 산화는 CO와 CH4에 의해 억제되었다. 이는 NO의 산화로 생성된 NO2가 CO 및 CH4의 산화제로 사용되기 때문으 로 추측된다. 또한 CO와 CH4의 산화는 경쟁 반응으로 보이지만 산화 활성 온도가 다르기 때문에 서로의 산화 억제 효과는 두드러지지 않 았다.

감 사

이 논문은 환경부의 폐자원에너지화 전문인력양성사업으로 지원되 었습니다.

References

- S. J. Lee and Y. Kim, A study on the demonstration of yellow plume elimination system from combined cycle power plant using liquid injection system, *J. Korea Acad. Industr. Coop. Soc.*, 21, 317-324 (2020).
- S. P. Cho, Air pollution control system for combined cycle power plants in Korea, KCI News, 25, 28-33 (2022).
- M. An, S. Kim, and S. Lee, NOx reduction analysis from hybrid De-NOx facility of combined cycle power plant, *KSFM*, 24, 62-66 (2021).
- D. S. Yun and W. J. Yu, Early detection of combustion abnormality through analysis of blade path temperature pattern in gas turbine, *Trans. Korean Soc. Mech. Eng. B.*, 47, 117-124 (2023).
- B. T. Lee and J. Choe, A study on the effect of operating temperature and NH₃ on dust collection rate of electrostatic precipitator, *Trans. Korean Inst. Elect. Eng.*, **70**, 219-225 (2021).
- K. W. Kim, K. M. Lee, and S. C. Hong, A study of characterization for catalytic oxidation of nitrogen monoxide over Mn/TiO₂ catalyst, *Appl. Chem. Eng.*, 25, 474-480 (2014).
- I. Nova, C. Ciardelli, E. Tronconi, E. Chatterjee, and B. Bandl-Konrad, NH₃-NO/NO₂ chemistry over V-based catalysts and its role in the mechanism of the fast SCR reaction, *Catal. Today*, **114**, 3-12 (2006).

- H. j. Kim, S. W. Choi, and C. S. Lee, Activity and characteristics of Cu-Mn oxide catalysts supported on γ -Al₂O₃, *Korean Chem. Eng. Res.*, 44, 193-199 (2006).
- T. J. Cheon, H. J. Kim, and S. W. Choi, Catalytic oxidation of toluene over Mn-Ce/γ -Al₂O₃ catalyst doped with Ce, *J. Korean Soc. Environ. Eng.*, 27, 513-518 (2005).
- M. S. Kim, S. W. Kim, and H. S. Chang, A Study on the characteristics of CO oxidation by NO poisoning in Pt/TiO₂ catalyst, *Clean Technol.*, 25, 296-301 (2019).
- F. Fan, L. Wang, L. Wang, J. Liu, and M. Wang, Low-temperature selective NO reduction by CO over copper-manganese oxide spinel, *Catalyst*, **12**, 591 (2022)
- H. Wang, H. Chen, Y. Wang, and Y. K. Lyn, Performance and mechanism comparison of manganese oxides at different valence state for catalytic oxidation of NO, *Chem. Eng. J.*, **361**, 1161-1172 (2019).
- Z. Liu, Y. Yi, S. Zhang, T. Zhu, J. Zhu, and J. Wang, Selective catalytic reduction of NOx with NH₃ over Mn-Ce mixed oxide catalyst at low temperatures, *Catal. Today*, **216**, 76-81 (2013).
- Y. Z. Zhou, S. Ren, M. Wang, J. Yang, Z. Chen, and L. Chen, Mn and Fe oxides co-effect on nanopolyhedron CeO₂ catalyst for NH₃-SCR of NO, *J. Energy Inst.*, **99**, 97-104 (2021).
- B. Hillary, P. Sudarsanam, M. H. Amin, and S. K. Bhargava, Nanoscale cobalt-manganese oxide catalyst supported on shapecontrolled cerium oxide: Effect of nanointerface configuration on structural, redox, and catalytic properties, *Langmuir*, 33, 1743-1750 (2017).
- Q. Tang, X. Gong, P. Zhao, and Y. Yang, Copper-manganese oxide catalyst supported on alumina: Physicochemical features and catalytic performances in the aerobic oxidation of benzyl alcohol, *Appl. Catal. A: Gen.*, 389, 101-107 (2010).
- C. Sun, Y. Tang, F. Gao, J. Sun, K. Ma, C. Tang, and L. Dong, Effect of different manganese precursors as promoters on catalytic performance of CuO-MnOx/TiO₂ catalyst for NO removal by CO, *Phys. Chem. Chem. Phys.*, **17**, 15996-16006 (2015).
- M. Aghbolaghy, J. Soltan, and N. Chen, Role of surface carboxylates in the gas phase ozone-assisted catalytic oxidation of toluene, *Catal. Lett.*, **147**, 2421-2433 (2017).
- W. Sun, X. Li, Q. Zhao, J. Mu, and J. Chen, Fe-Mn mixed oxide catalysts synthesized by one-step urea precipitation method for the selective catalytic reduction of NOx with NH₃ at low temperature, *Catal. Lett.*, **148**, 227-234 (2018).
- E. Rezaei and J. Soltan, Low temperature oxidation of toluene by ozone over MnOx/γ-alumina and MnOx/MCM-41 catalysts, *Chem. Eng. J.*, **198-199**, 482-490 (2012).
- Z. Chen, Q. Yang, H. Li, X. Li, L. Wang, and S. C. Tsang, Cr-MnOx mixed-oxdie catalysts for selective catalytic reduction of NOx, *J. Catal.*, **276**, 56-65 (2010).
- H. H. Lee, K. H. Park, and W. S. Cha, Characterization of low temperature selective catalytic reduction over Ti added Mn-Cu metal oxides, *J. Ind. Eng. Chem.*, 24, 599-604 (2013).
- C. Xuan, S. Han, L. Wang, X. Zhang, R. Sun, X. Cheng, Z. Wang, C. Ma, T. Zhao, and X. Hou, Mechanism of NO reduction by NH₃ over CuMnOx catalysts and the influence mechanism of CO, *Catal. Sci. Technol.*, **13**, 3106-3124 (2023).
- J. R. Li, W. P. Zhang, C. Li, and C. He, Efficient catalytic degradation of toluene at a readily prepared Mn-Cu catalyst: Catalytic performance and reaction pathway, *J. Colloid Interface Sci.*, 591,

396-408 (2021).

- J. R. Li, W. P. Zhang, C. Li, H. Xiao, and C. He, Insight into the catalytic performance and reaction routes for toluene total oxidation over facilely prepared Mn-Cu bimetallic oxide catalysts, *Appl. Surf. Sci.*, **550**, 149179 (2021).
- 26. Y. Yi, P. Zhang, Z. Qin, C. Yu, W. Li, Q. Qin, B. Li, M. Fan, X. Liang, and L. Dong, Low temperature CO oxidation catalysed by flower-like Ni-Co-O: How physicochemical properties influence catalytic performance, *RSC Adv.*, 8, 7110-7122 (2018).
- 27. M. AL-Harbi, R. Hayes, M. Votsmeier, and W. S. Epling, Competitive NO, CO and hydrocarbon oxidation reactions over a

disel oxidation cataltyst, Can. J. Chem. Eng., 90, 1527-1538 (2012).

Authors

- Ji Eun Jeong; M.Sc., Ph.D. Course, Department of Environmental Engineering, Kongju National University, Cheonan 31080, Korea; 201402079@smail.kongju.ac.kr
- Chang-Yong Lee; Ph.D., Professor, Department of Environmental Engineering, Kongju National University, Cheonan 31080, Korea; cylee@kongju.ac.kr