• Title/Summary/Keyword: $MgCO_3$

Search Result 3,255, Processing Time 0.041 seconds

Hydroxide ion Conduction Mechanism in Mg-Al CO32- Layered Double Hydroxide

  • Kubo, Daiju;Tadanaga, Kiyoharu;Hayashi, Akitoshi;Tatsumisago, Masahiro
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.230-236
    • /
    • 2021
  • Ionic conduction mechanism of Mg-Al layered double hydroxides (LDHs) intercalated with CO32- (Mg-Al CO32- LDH) was studied. The electromotive force for the water vapor concentration cell using Mg-Al CO32- LDH as electrolyte showed water vapor partial pressure dependence and obeyed the Nernst equation, indicating that the hydroxide ion transport number of Mg-Al CO32- LDH is almost unity. The ionic conductivity of Mg(OH)2, MgCO3 and Al2(CO3)3 was also examined. Only Al2(CO3)3 showed high hydroxide ion conductivity of the order of 10-4 S cm-1 under 80% relative humidity, suggesting that Al2(CO3)3 is an ion conducting material and related to the generation of carrier by interaction with water. To discuss the ionic conduction mechanism, Mg-Al CO32- LDH having deuterium water as interlayer water (Mg-Al CO32- LDH(D2O)) was prepared. After the adsorbed water molecules on the surface of Mg-Al CO32- LDH(D2O) were removed by drying, DC polarization test for dried Mg-Al CO32- LDH(D2O) was examined. The absorbance attributed to O-D-stretching band for Mg-Al CO32- LDH(D2O) powder at around the positively charged electrode is larger than that before polarization, indicating that the interlayer in Mg-Al CO32- LDH is a hydroxide ion conduction channel.

Electronic Structures and Magnetism of MgCCo3(001) (MgCCo3(001)표면의 전자구조와 자성)

  • Jin, Ying-Jiu;Lee, Jae-Il
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.3
    • /
    • pp.94-98
    • /
    • 2004
  • The electronic structures and magnetism of MgCCo$_3$(001) surface terminated by the plane with the MgCo-Term (Mg, Co terminated) and the CCo-Term (C, Co terminated) were investigated using the all-electron full-potential linearized augmented Plane-wave method. For the MgCo-Term, the magnetic moment of Co atom of the surface is strongly enhanced to 1.00$\mu$$_{B}$, while the magnetic moment of Co atom of the subsurface is similar to that of the center layers. For the CCo-Term, the magnetic moments of Co atoms are enhanced to 0.75 and 0.80$\mu$$_{B}$ for the surface and subsurface layers, respectively. The magnetic moments of C and Mg atoms are coupled antiferromagnetically to that of the neighbour Co atoms. From the calculated density of states, we see that the enhancements of magnetic moments of Co atoms are closely related to localization of the Co-3d states.

Properties of Cement Paste Containing High Volume γ-C2S and MgO Subjected to CO2 Curing (γ-C2S 및 MgO를 다량 혼입한 시멘트 페이스트의 CO2 양생유무에 따른 특성변화)

  • Sung, Myung-Jin;Cho, Hyeong-Kyu;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.3
    • /
    • pp.281-289
    • /
    • 2015
  • Carbonation of concrete causes reduction of pH and subsequently causes steel corrosion for reinforced concrete structure. However, for plain concrete structure or PC product, it can lead to a decrease in porosity, high density, improvement of concrete, shrinkage-compensation. Recently, based on this theory, research of $CO_2$ curing effect has been performed, but it was mainly focused on its effects on compressive strength using only ordinary portland cement. Researches on $CO_2$ curing effect for concrete containing $CO_2$ reactive materials such as ${\gamma}-C_2S$, MgO haven't been investigated. Therefore, this study has performed experiments under water-binder ratio 40%, and the replacement ratios of ${\gamma}-C_2S$ and MgO were 90%. Micro-chemical analysis, measurement of compressive strength according to admixtures and $CO_2$ curing were investigated. Results from this study revealed that higher strength was measured in case of $CO_2$ curing compared with none $CO_2$ curing for plain specimen indicating difference between 1.08 and 1.26 times, in case of ${\gamma}-C_2S$ 90, MgO 90 specimen, incorporating high volume replaced as much as 90%, it was proven that when applying $CO_2$ curing, higher strength which has difference between 14.56 and 45.7 times, and between 6.5 and 10.37 times was measured for each specimen compared to none $CO_2$ curing. Through micro-chemical analysis, massive amount of $CaCO_3$, $MgCO_3$ and decrease of porosity were appeared.

Evaluation of Magnesia Cement Using MgCO3 and Serpentine (MgCO3와 사문석을 사용한 마그네시아 시멘트의 특성평가)

  • Lee, Jong-Kyu;Soh, Jung-Sub;Chu, Yong-Sik;Song, Hun;Park, Ji-Sun
    • Korean Journal of Materials Research
    • /
    • v.22 no.11
    • /
    • pp.598-603
    • /
    • 2012
  • MgO based cement for the low-temperature calcination of magnesite required less energy and emitted less $CO_2$ than the manufacturing of Portland cements. Furthermore, adding reactive MgO to Portland-pozzolan cement can improve their performance and also increase their capacity to absorb atmospheric $CO_2$. In this study, the basic research for magnesia cement using $MgCO_3$ and magnesium silicate ore (serpentine) as starting materials was carried out. In order to increase the hydration activity, $MgCO_3$ and serpentinite were fired at a temperature higher than $600^{\circ}C$. In the case of $MgCO_3$ as starting material, hydration activity was highest at $700^{\circ}C$ firing temperature; this $MgCO_3$ was completely transformed to MgO after firing. After the hydration reaction with water, MgO was totally transformed to $Mg(OH)_2$ as hydration product. In the case of using only $MgCO_3$, compressive strength was 35 $kgf/cm^2$ after 28 days. The addition of silica fume and $Mg(OH)_2$ led to an enhancements of the compressive strength to 55 $kgf/cm^2$ and 50 $kgf/cm^2$, respectively. Serpentine led to an up to 20% increase in the compressive strength; however, addition of this material beyond 20% led to a decrease of the compressive strength. When we added $MgCl_2$, the compressive strength tends to increase.

Sintering Properties of the $Mg_5Ta_4O_{15}$ Ceramics with $Li_2CO_3$ Additions ($Li_2CO_3$ 첨가에 따른 $Mg_5Ta_4O_{15}$ 세라믹스의 소결 특성)

  • Kim, Jae-Sik;Choi, Eui-Sun;Ryu, Ki-Won;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2008.05a
    • /
    • pp.175-176
    • /
    • 2008
  • In this study, the sintering properties and structural properties of the $Mg_5Ta_4O_{15}$cation-deficient perovskite ceramics with $Li_2CO_3$ additions are investigated. The cation-deficient perovskite ceramics are prepared through the solid-state route. According to the XRD pattern, $Mg_4Ta_2O_9$, $MgTa_2O_6$ and $Mg_5Ta_4O_{15}$ phase existed in sintered pure $Mg_5Ta_4O_{15}$ ceramics. With $Li_2CO_3$, additions, the peak intensities of $Mg_4Ta_2O_9$ and $MgTa_2O_6$ phase were reduced. Also, diffraction intensity of the $Mg_5Ta_4O_{15}$ phase was increased with increments of $Li_2CO_3$ additions. The bulk densities were increased with increasing of $Li_2CO_3$ amount and approach the theoretical density of the $Mg_5Ta_4O_{15}$ ceramics, more and more. Microstructure of the $Mg_5Ta_4O_{15}$ ceramics were densified more and more by additions of $Li_2CO_3$. The bulk density of $Mg_5Ta_4O_{15}$+5wt% $Li_2CO_3$ ceramics sintered at $1500^{\circ}C$ for 10 hours was $5.88g/cm^3$.

  • PDF

Structural and Dielectric Properties of BST-MgO with $B_2O_3-Li_2CO_3$ Thick Films ($B_2O_3-Li_2CO_3$가 첨가된 BST-MgO 후막의 구조 및 유전 특성)

  • Kang, Won-Seok;Kim, Jae-Sik;Koh, Jung-Hyuk;Lee, Young-Hie
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.19-20
    • /
    • 2007
  • At first the $Ba_{0.5}Sr_{0.5}TiO_3$-MgO powder with $B_2O_3-Li_2CO_3$ were made by the Sol-Gel method. The thick films of BST-MgO with $B_2O_3-Li_2CO_3$ were fabricated on the $Al_2O_3$ substrates coated with Pt by the screen printing method. The structural and dielectric properties of the BST-MgO thick film with $B_2O_3-Li_2CO_3$, addition were investigated. The structure of the BST-MgO with $B_2O_3-Li_2CO_3$ thick films were dense and homogeneous with no pores. The dielectric constant was increased and dielectric loss was decreased with increasing the sintering temperature.

  • PDF

Effect of Inorganic Admixture for Magnesia Cement Using MgCO3 and Serpentine (MgCO3와 사문석을 사용한 마그네시아 시멘트의 무기 첨가제 영향)

  • Lee, Jong-Kyu;Soh, Jung-Sub
    • Korean Journal of Materials Research
    • /
    • v.25 no.2
    • /
    • pp.75-80
    • /
    • 2015
  • The carbon dioxide($CO_2$) released while producing building materials is substantial and has been targeted as a leading contributor to global climate change. One of the most typical method to reducing $CO_2$ for building materials is the addition of slag and fly ash, like pozzolan material, while another method is reducing $CO_2$ production by carbon negative cement development. The MgO-based cement was from the low-temperature calcination of magnesite required less energy and emitted less $CO_2$ than the manufacturing of Portland cements. It is also believed that adding reactive MgO to Portland-pozzolan cements could improve their performance and also increase their capacity to absorb atmospheric $CO_2$. In this study, the basic research for magnesia cement using $MgCO_3$ and magnesium silicate ore (serpentine) as main starting materials, as well as silica fume, fly ash and blast furnace slag for the mineral admixture, were carried out for industrial waste material recycling. In order to increase the hydration activity, $MgCl_2$ was also added. To improve hydration activity, $MgCO_3$ and serpentinite were fired at $700^{\circ}C$ and autoclave treatment was conducted. In the case of $MgCO_3$ as starting material, hydration activity was the highest at firing temperature of $700^{\circ}C$. This $MgCO_3$ was completely transferred to MgO after firing. This occurred after the hydration reaction with water MgO was transferred completely to $Mg(OH)_2$ as a hydration product. In the case of using only $MgCO_3$, the compressive strength was 3.5MPa at 28 days. The addition of silica fume enhanced compressive strength to 5.5 MPa. In the composition of $MgCO_3$-serpentine, the addition of pozzolanic materials such as silica fume increased the compression strength. In particular, the addition of $MgCl_2$ compressive strength was increased to 80 MPa.

A Study on Synthesis of CaCO3 & MgO/Mg(OH)2 from Dolomite Using the Strong Acidic Cation Exchange Resin (강산성 양이온 교환수지를 통한 백운석으로부터 CaCO3 및 MgO/Mg(OH)2 합성에 관한 연구)

  • Hwang, Dae Ju;Yu, Young Hwan
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.812-825
    • /
    • 2019
  • Two dolomite samples mined from the different mines were calcined using a batch-type microwave kiln ($950/60min^{\circ}C$) to produce $CaO{\cdot}MgO$. The hydration of the $CaO{\cdot}MgO$ samples shows different reactivity. MgO was separated by reacting with a strong acid cation exchange resin using the reactivity of the hydration properties of light dolomite ($CaO{\cdot}MgO$). Calcium ($Ca-(R-SO_3)_2$) was separated from the prepared $CaO{\cdot}MgO$ by the cation exchange resin ($CaO{\cdot}MgO:R-SO_3H=1:12mass%$). High purity MgO (higher than 94 mass %) with unburned $CaCO_3$ (1~2 mass %) was obtained by the separation process. The separated MgO was heated at $950^{\circ}C$ for 60 minutes to afford high purity MgO with MgO content higher than 96%. And High-grade $CaCO_3$ was prepared from the reaction with calcium adsorbed resin ($Ca-(R-SO_3)_2$) and NaOH, $CO_2$ gas.

Structural and Dielectirc Properties of BST-MgO with $B_{2}O_{3}-Li_{2}CO_{3}$ Thick Films ($B_{2}O_{3}-Li_{2}CO_{3}$의 첨가량에 따른 BST-MgO 후막의 구조 및 유전 특성)

  • Kang, Won-Seok;Koh, Jung-Hyuk;Nam, Song-Min;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1261-1262
    • /
    • 2007
  • At first the $Ba_{0.5}Sr_{0.5}TiO_{3}$-MgO powder with $B_{2}O_{3}-Li_{2}CO_{3}$ were made by the Sol-Gel method. And then the thick films of BST-MgO with $B_{2}O_{3}-Li_{2}CO_{3}$ were fabricated on the $Al_{2}O_{3}$ substrates coated with Pt by the screen printing method. The structural and dielectric properties of the BST-MgO thick film with $B_{2}O_{3}-Li_{2}CO_{3}$ addition were investigated. The structure of the BST-MgO with $B_{2}O_{3}-Li_{2}CO_{3}$ thick films were dense and homogeneous with no pores. The dielectric constant and dielectric loss were increased with decreasing the $B_{2}O_{3}-Li_{2}CO_{3}$ addition ratio.

  • PDF

A Study on the Mineral Water Quality in Asia Partial Area (아시아 일부지역의 광천수 수질특성에 관한 연구)

  • Hwang, Sang-Yong
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.3 s.61
    • /
    • pp.9-14
    • /
    • 2006
  • From March 1, 2005 to August 31, 2006 mineral water wells were selected for 13 areas in Southeast Asia (Indonesia, Philippines, Thailand, Singapore) and 20 areas in Northeast Asia (Korea, North Korea, China, Japan) and the study on their mineral water quality was analyzed. - Mineral water quality was the best in Korea. Mineral spring waters in some area of China and North Korea and in the whole area of the Southeast Asia were of poor quality. - The hardness of mineral water was the low in Korea $(10{\sim}47mg/L\;as\;CaCO_3)$, Japan $(4{\sim}66mg/L\;as\; CaCO_3)$, Geumgang-san North Korea Area $(4mg/L\;as\;CaCO_3)$. Mineral spring water in Thailand, Indonesia $(1{\sim}97.5mg/L\;as\;CaCO_3)$ and in the other area $(120{\sim}1205mg/L\;as\;CaCO_3)$ were high degree of hardness. - pH value in the mineral water of Southeast Asia $(pH\;6.7{\sim}8.2)$ and Northeast Asia $(pH\;5.9{\sim}7.9)$ was up to WHO standard $(pH\;6.5{\sim}8.5)$. Fluorine of negative ion was found in 10 mineral waters: Indonesian mineral water 'ATARTN'(0.02mg/L), Thailand mineral water 'SIAM' (0.6mg/L), 'MASAFI' (0.02mg/L). Korean mineral water 'SAEMMULNARA' (1.1mg/L), 'SANSU'(0.6mg/L), 'ICIS'(0.3mg/L), 'DONGWON SAEM-MUL'(0.03mg/L), 'PYEONGCHANG' (0.6mg/L), North Korean mineral water 'KUMGANGSAN'(0.1mg/L), Japanese mineral water 'CRYSTAL GEYSER'(0.55mg/L). However Fluorine in the other 23 mineral waters were not detectable.