Browse > Article
http://dx.doi.org/10.3740/MRSK.2012.22.11.598

Evaluation of Magnesia Cement Using MgCO3 and Serpentine  

Lee, Jong-Kyu (Energy & Environment Division, Korea Institute of Ceramic Eng. & Tech.)
Soh, Jung-Sub (Energy & Environment Division, Korea Institute of Ceramic Eng. & Tech.)
Chu, Yong-Sik (Energy & Environment Division, Korea Institute of Ceramic Eng. & Tech.)
Song, Hun (Energy & Environment Division, Korea Institute of Ceramic Eng. & Tech.)
Park, Ji-Sun (Building Research Department, Korea Institute of Construction Technology)
Publication Information
Korean Journal of Materials Research / v.22, no.11, 2012 , pp. 598-603 More about this Journal
Abstract
MgO based cement for the low-temperature calcination of magnesite required less energy and emitted less $CO_2$ than the manufacturing of Portland cements. Furthermore, adding reactive MgO to Portland-pozzolan cement can improve their performance and also increase their capacity to absorb atmospheric $CO_2$. In this study, the basic research for magnesia cement using $MgCO_3$ and magnesium silicate ore (serpentine) as starting materials was carried out. In order to increase the hydration activity, $MgCO_3$ and serpentinite were fired at a temperature higher than $600^{\circ}C$. In the case of $MgCO_3$ as starting material, hydration activity was highest at $700^{\circ}C$ firing temperature; this $MgCO_3$ was completely transformed to MgO after firing. After the hydration reaction with water, MgO was totally transformed to $Mg(OH)_2$ as hydration product. In the case of using only $MgCO_3$, compressive strength was 35 $kgf/cm^2$ after 28 days. The addition of silica fume and $Mg(OH)_2$ led to an enhancements of the compressive strength to 55 $kgf/cm^2$ and 50 $kgf/cm^2$, respectively. Serpentine led to an up to 20% increase in the compressive strength; however, addition of this material beyond 20% led to a decrease of the compressive strength. When we added $MgCl_2$, the compressive strength tends to increase.
Keywords
magnesia cement; MgO; hydration activity; compressive strength; $MgCl_2$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Schneider, M. Romer, M. Tschudin and H. Bolio, Cem. Concr. Res., 41(7), 642 (2011).   DOI   ScienceOn
2 J. Harder, Zement-Kalk-Gips, 59(2), 58 (2006).
3 A. Santra and R. Sweatman, Energy Procedia, 4, 5243 (2011).   DOI   ScienceOn
4 B. Kolani, L. Buffo-Lacarrière, A. Sellier, G. Escadeillas, L. Boutillon and L. Linger, Cement Concr. Compos., 34,(9), 1009 (2012).   DOI
5 B Uzal and L Turanli, Cem. Concr. Res., 33(11), 1777(2003).   DOI   ScienceOn
6 L. Turanli, B. Uzal and F. Bektas, Cem. Concr. Res., 34(12), 2277 (2004).   DOI   ScienceOn
7 J. Temuujin, A. van Riessen and K. J. D. MacKenzie, Construct. Build. Mater., 24(10) 1906 (2010).   DOI   ScienceOn
8 T. Tho-in, V. Sata, P. Chindaprasirt and C. Jaturapitakkul, Construct. Build. Mater., 30, 366 (2012).   DOI   ScienceOn
9 D. L. Y. Kong and J. G. Sanjayan, Cem. Concr. Res., 40(2), 334 (2010).   DOI   ScienceOn
10 E. N. Kani, A. Allahverdi and J. L. Provis, Cement Concr. Compos., 34(1), 25 (2012).   DOI   ScienceOn
11 E. M. Gartner and D. E. Macpee, Cem. Concr. Res., 41, 736 (2011).   DOI   ScienceOn
12 L. J. Vandeperre, M. Liska and A. Al-Tabbaa, Cement Concr. Compos., 30(8), 706 (2008).   DOI   ScienceOn
13 M. Liska and A. Al-Tabbaa, Construct. Build. Mater., 22(8), 1789 (2008).   DOI   ScienceOn
14 E. Soudee and J. Pera, Cem. Concr. Res., 32(1), 153 (2002).   DOI   ScienceOn
15 Q. Yang, B. Zhu, S. Zhang and X. Wu, Cem. Concr. Res., 30(11), 1807 (2000).   DOI   ScienceOn
16 P. Frantzis and R. Baggott, Cem. Concr. Res., 27(8), 1155 (1997).   DOI   ScienceOn