• Title/Summary/Keyword: $Li_2SiO_3$

Search Result 299, Processing Time 0.029 seconds

Immobilization of sodium-salt wastes containing simulated 137Cs by volcanic ash-based ceramics with different Si/Al molar ratios

  • Sun, Xiao-Wen;Liu, Li-Ke;Chen, Song
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3952-3965
    • /
    • 2021
  • In this study, volcanic ash was used as raw material to prepare waste forms with different silicon/aluminum (Si/Al) molar ratios to immobilize sodium-salt waste (SSW) containing simulated 137Cs. Effects of Si/Al molar ratios (3:1 and 2:1) and sodium salts on sintering behavior of waste forms and immobilization mechanism of Cs+ were investigated. Results indicated that the main mineral phase of sintered waste-form matrixes was albite, and the formation of major phases was found to depend on Si/Al molar ratios. Si/Al molar ratio of 2 was favorable for the formation of pollucite, and the formation and crystallization of mineral phases were also decided based on physicochemical characteristics of sodium salts. Furthermore, product consistency test results indicated that the immobilization of Cs+ was related to Si/Al molar ratio, types of sodium salts, and glassy phase. Waste forms with Si/Al molar ratio of 2 exhibited better ability to immobilize Cs+, whereas the influence of sodium salts and glassy phases on the immobilization of SSW showed more complicated relationship. In waste forms with Si/Al molar ratio of 2, Cs+ leaching concentrations of samples containing Na2B4O7·10H2O and NaOH were low. Na2B4O7·10H2O easily transformed into liquid phase during sintering to consequently achieve low temperature liquid-phase sintering, which is beneficial to avoid the volatilization of Cs+ at high temperature. Results clearly reveal that waste forms with Si/Al molar ratio of 2 and containing Na2B4O7·10H2O show excellent immobilization of Cs+.

Ni/ZnO-based Adsorbents Supported on Al2O3, SiO2, TiO2, ZrO2: A Comparison for Desulfurization of Model Gasoline by Reactive Adsorption

  • Meng, Xuan;Huang, Huan;Weng, Huixin;Shi, Li
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3213-3217
    • /
    • 2012
  • Reactive adsorption desulfurization (RADS) experiments were conducted over a series of commercial metal oxide supports ($Al_2O_{3-}$, $SiO_{2-}$, $TiO_{2-}$ and $ZrO_{2-}$) supported Ni/ZnO adsorbents. The adsorbents were characterized by X-ray diffraction (XRD), temperature programmed reduction (TPR), and Fourier transform infrared spectroscopy (FTIR) in order to find out the influence of specific types of surface chemistry and structural characteristics on the sulfur adsorptive capacity. The desulfurization performance of all the studied adsorbents decreased in the following order: Ni/ZnO-$TiO_2$ > Ni/ZnO-$ZrO_2$ > Ni/ZnO-$SiO_2$ > Ni/ZnO-$Al_2O_3$. Ni/ZnO-$TiO_2$ shows the best performance and the three hour sulfur capacity can achieve 12.34 mg S/g adsorbent with a WHSV of $4h^{-1}$. Various characterization techniques suggest that weak interaction between active component and support component, high dispersion of NiO and ZnO, high reducibility and large total Lewis acidity of the adsorbents are important factors in achieving better RADS performance.

The Dissolution of Magnesium and Iron from Ferronickel Slag Depending on Aging Condition (Aging 조건에 따른 페로니켈 슬래그의 마그네슘 및 철 용출 특성)

  • Kim, Eun-Young;Choi, Sang-Won;Kim, Viktor;Li, Yujia;Park, Ji-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.350-356
    • /
    • 2013
  • Dissolution of ferronickel slag depending on aging condition was studied. Ferronickel slag typically contains 54.05% $SiO_2$, 34.33% MgO, and 5.51% $Fe_2O_3$. The main structure composite was similar to Enstatite [(Mg, $Fe^{2+}$ )$SiO_3$]. Ferronickel slag aging was made in 3 months under various experimental conditions, in water, bubbling water and wetting air. The most effective aging condition was the wetting air treatment. In this condition, the dissolving concentration of Mg and Fe was 80.0% and 75.1% respectively. The XRD and SEM data revealed that the wetting air condition also showed the biggest structural damage.

A Basic Study for Removal of Heavy Metal Elements from Wastewater using Spent Lithium-Aluminum-Silicate(LAS) Glass Ceramics (사용 후 유리세라믹(Lithium-Aluminum-Silicate)을 활용한 중금속 제거 기초 연구)

  • Go, Min-Seok;Wang, Jei-Pil
    • Resources Recycling
    • /
    • v.31 no.4
    • /
    • pp.49-55
    • /
    • 2022
  • In this study, the heavy metal ions (of Pb, Cd, Cr, and Hg) in wastewater were removed using a spent Li2O-Al2O3-SiO2-based crystallized glass previously used as an induction top plate material. Changes in the removal efficiency of heavy metals according to different reaction parameters, such as the amount of zeolite used as a heavy-metal adsorbent, adsorption time, initial concentration of the heavy metals, and pH of the initial solution, were investigated. As the amount of zeolite added increased, the heavy-metal removal efficiency also increased. Adsorption time had a considerable influence on adsorption characteristics, and the removal efficiency of all heavy metals increased with increasing adsorption time. In the case of Cd, the removal efficiency was greatly improved depending on the adsorption time. The initial concentration of the heavy-metal solution did not affect the removal efficiency; however, the initial pH of the heavy-metal solution affected the removal efficiency. More specifically, the removal efficiency of Cd increased while that of Pb and Cr decreased with increasing pH. The adsorption characteristics of Hg were not significantly affected by pH.

Synthesis of Sialon by Carbothermal Reduction of Porous Glass (다공질유리의 탄소 열적환원반응에 의한 Sialon의 합성에 관한 연구)

  • 김병호;이덕열;김왕섭;전형우;이근헌
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.6
    • /
    • pp.771-782
    • /
    • 1989
  • Synthesis of $\beta$-Sialon powder was attempted with carbothermal reduction of porous glass. The porous glass was prepared by heat and hydrothermal treatments of 9.32 Li2O.46.5B2O3.37.2SiO2.6.98Al2O3 glass. Carbon pyrolyzed from propane gas was deposited on the porous glass, thereafter activated carbon was added as reducing agents. The synthesized $\beta$-Sialon powder was pressureless sintered at 175$0^{\circ}C$ for 1hr in N2 atmosphere. The characterization of the $\beta$-Sialon powder was performed with XRD, BET, SEM and particle size analysis. The sinterability and mechanical properties of the sintered bodies were investigated in terms of bulk density, M.O.R., fracture toughness, morphology of microstructure and etc. The reduction effect of deposited carbon was better than that of activated carbon mechanically added. The formation of SiC was precominant over that of Si2ON2 and $\beta$-Sialon owing to low partial pressure of N2 inside the pore, wehreas on the surface of porous glass the formation of Si2ON2 and $\beta$-Sialon were predominant. Thereafter, SiC reduced unreacted glass to be $\beta$-Sialon. Single phase of $\beta$-Sialon(Z=1.92) was obtained from PGA porous glass having the largest pore radius by the simultaneous reduction and nitridation method at 145$0^{\circ}C$ for 5hrs. The bulk density, M.O.R., and KIC of the sitered body are 3.17g/cc, 434.4MPa and 4.1MPa.m1/2, respectively.

  • PDF

Stabilization of Radioactive Molten Salt Waste by Using Silica-Based Inorganic Material (실리카 함유 무기매질에 의한 폐용융염의 안정화)

  • Park, Hwan-Seo;Kim, In-Tae;Kim, Hwan-Young;Kim, Joon-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.3
    • /
    • pp.171-177
    • /
    • 2007
  • This study suggested a new method to stabilize molten salt wastes generated from the pyre-process for the spent fuel treatment. Using conventional sol-gel process, $SiO_2-Al_2O_3-P_2O_5$ (SAP) inorganic material that is reactive to metal chlorides were prepared. In this paper, the reactivity of SAP with the metal chlorides at $650{\sim}850$, the thermal stability of reaction products and their leach-resistance under the PCT-A test method were investigated. Alkali metal chlorides were converted into metal aluminosilicate($LixAlxSi1-_xO_{2-x}$) and metal phosphate($Li_3PO_4\;and\;Cs_2AlP_3O_{10}$) While alkali earth and rare earth chlorides were changed into only metal phosphates ($Sr_5(PO_4)_3Cl\;and\;CePO_4$). The conversion rate was about $96{\sim}99%$ at a salt waste/SAP weight ratio of 0.5 and a weight loss up to $1100^{\circ}C$ measured by thermogravimetric analysis were below 1wt%. The leach rates of Cs and Sr under the PCT-A test condition were about $10^{-2}g/m^2\;day\;and\;10^{-4}g/m^2\;day$. From these results, it could be concluded that SAP can be considered as an effective stabilizer for metal chlorides and the method using SAP will give a chance to reduce the volume of salt wasteform for the final disposal through further researches.

  • PDF

Dependence of Electrons Loss Behavior on the Nitride Thickness and Temperature for Charge Trap Flash Memory Applications

  • Tang, Zhenjie;Ma, Dongwei;Jing, Zhang;Jiang, Yunhong;Wang, Guixia;Li, Rong;Yin, Jiang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.5
    • /
    • pp.245-248
    • /
    • 2014
  • $Pt/Al_2O_3/Si_3N_4/SiO_2/Si$ charge trap flash memory structures with various thicknesses of the $Si_3N_4$ charge trapping layer were fabricated. According to the calculated and measured results, we depicted electron loss in a schematic diagram that illustrates how the trap to band tunneling and thermal excitation affects electrons loss behavior with the change of $Si_3N_4$ thickness, temperature and trap energy levels. As a result, we deduce that $Si_3N_4$ thicknesses of more than 6 or less than 4.3 nm give no contribution to improving memory performance.

Characteristics of glass-ceramics of LAS system having high thermal shock resistance and selective transparency in visible region of spectrum (가시광 스펙트럼 영역에서 선택적인 투과와 내열충격성을 갖는 LAS계 글라스세라믹의 특성)

  • Byun, W.B.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1565-1567
    • /
    • 2003
  • LAS($Li_2O-Al_2O_3-SiO_2$)계에 전이금속과 희토류 이온을 첨가한 글라스세라믹의 colouring에 대한 특성 분석이 이루어졌다. 투과성이 높고, 내열 충격성이 우수한 글라스세라믹을 제조한 수 있었으며, 주 결정상은 ${\beta}$-eucryptite(SS)이었다. 또한 colouring에 의한 빛의 흡수 특성과 이러한 글라스세라믹에서의 colouring 이온의 구조적 상태가 조사되었다.

  • PDF

Effect of HF Treatment on the Crystallization Behavior of the Glass Containing Coal Bottom Ashes (석탄바닥재가 포함된 유리의 결정화 특성에 미치는 HF 처리 효과)

  • Jo, Si-Nae;Kang, Seung-Gu
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.1
    • /
    • pp.80-85
    • /
    • 2011
  • The crystallization behavior and microstructural change of the glass-ceramics were analyzed as a function of concentration and etching time of the HF solution in order to enhance the degree of crystallinity induced by heterogeneous nucleation of glass of bottom ash containing 15 wt% $Li_2O$. The nucleation site seemed to be generated where the Si ion was eluted. The main crystal phases in the glass-ceramics fabricated in this study were $\beta$-spodumene and $Li_2SiO_3$. The specimens etched with HF of 0.5 vol% within 0~60 seconds showed increased crystalline peak intensities in XRD pattern with etching time compared to no-etched one. Also the crystal size and crystal occupancy in the glass matrix observed by SEM were increased with etching time. For the glass-ceramics etched with 1.0 and 2.0 vol% HF solution, the etching time over 10 s was not effective to increase the crystallinity. From this study, it was found that the glass-ceramics with the higher crystallinity could be obtained by HF-etching followed by heat treatment process, even though the nucleating agent or 2-stages thermal treatment process were not used.

Blistering Induced Degradation of Thermal Stability Al2O3 Passivation Layer in Crystal Si Solar Cells

  • Li, Meng;Shin, Hong-Sik;Jeong, Kwang-Seok;Oh, Sung-Kwen;Lee, Horyeong;Han, Kyumin;Lee, Ga-Won;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.53-60
    • /
    • 2014
  • Different kinds of post-deposition annealing (PDA) by a rapid thermal process (RTP) are used to enhance the field-effect passivation of $Al_2O_3$ film in crystal Si solar cells. To characterize the effects of PDA on $Al_2O_3$ and the interface, metal-insulator semiconductor (MIS) devices were fabricated. The effects of PDA were characterized as functions of RTP temperature from $400{\sim}700^{\circ}C$ and RTP time from 30~120 s. A high temperature PDA can retard the passivation of thin $Al_2O_3$ film in c-Si solar cells. PDA by RTP at $400^{\circ}C$ results in better passivation than a PDA at $400^{\circ}C$ in forming gas ($H_2$ 4% in $N_2$) for 30 minutes. A high thermal budget causes blistering on $Al_2O_3$ film, which degrades its thermal stability and effective lifetime. It is related to the film structure, deposition temperature, thickness of the film, and annealing temperature. RTP shows the possibility of being applied to the PDA of $Al_2O_3$ film. Optimal PDA conditions should be studied for specific $Al_2O_3$ films, considering blistering.