Browse > Article

The Dissolution of Magnesium and Iron from Ferronickel Slag Depending on Aging Condition  

Kim, Eun-Young (Department of Chemical & Biomolecular Engineering, College of Engineering, Chonnam National University)
Choi, Sang-Won (Department of Chemical & Biomolecular Engineering, College of Engineering, Chonnam National University)
Kim, Viktor (Department of Chemical & Biomolecular Engineering, College of Engineering, Chonnam National University)
Li, Yujia (Department of Chemical & Biomolecular Engineering, College of Engineering, Chonnam National University)
Park, Ji-Hyun (Department of Chemical & Biomolecular Engineering, College of Engineering, Chonnam National University)
Publication Information
Applied Chemistry for Engineering / v.24, no.4, 2013 , pp. 350-356 More about this Journal
Abstract
Dissolution of ferronickel slag depending on aging condition was studied. Ferronickel slag typically contains 54.05% $SiO_2$, 34.33% MgO, and 5.51% $Fe_2O_3$. The main structure composite was similar to Enstatite [(Mg, $Fe^{2+}$ )$SiO_3$]. Ferronickel slag aging was made in 3 months under various experimental conditions, in water, bubbling water and wetting air. The most effective aging condition was the wetting air treatment. In this condition, the dissolving concentration of Mg and Fe was 80.0% and 75.1% respectively. The XRD and SEM data revealed that the wetting air condition also showed the biggest structural damage.
Keywords
aging; ferronickel slag; dissolution; magnesium; iron;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. W. Choi, V. Kim, W. S. Chang, and E. Y. Kim, Mag. of the Kor. Conc. Ins., 19, 28 (2007).
2 K. H. park and C. W. Nam, Trends in Met. & Met. Eng., 21, 4 (2008).
3 E. Y. Kim, S. W. Choi, V. Kim, Y. Li, and J. H. Park, J. of Kor. Soc. of Waste Management, 28, 672 (2011).
4 E. W. Choi, Sungkyunkwan University, Seoul, Korea (2010).
5 R. A. Ber, Rev. Mineral., 31, 565 (1995).
6 H. Sougata and V. W. John, Geochim. Cosmochim. Acta, 75, 7486 (2011).   DOI   ScienceOn
7 R. A. Walther and J. V. Walther, Geochim. Cosmochim. Acta, 55, 943 (1991).   DOI   ScienceOn
8 C. M. K. Samuel and S. L. Klaus, Int. J. Gree. Gas Con., 5, 1073 (2011).   DOI   ScienceOn
9 A. H. Park, R. Jadhav, and L. S. Fan, J. Chem. Eng., 81, 885 (2003).
10 A. M. George, M. V. Mercedes, and G. A. Parnana, Fuel, 86, 273 (2007).   DOI   ScienceOn
11 K. K. Yoo, D. J. Kim, H. S. Chung, M. S. Kim, and J. C. Lee, J. of Min. & Ener. Res., 45, 257 (2008).
12 Q. Odeta, K. Libor, K. K. Ravi, S. I. Eugene, W. A. Bruce, T. Jiri, and R. F. Andrew, Chem. Geol., 332, 124 (2012).
13 V. K. Elena, M. K. Alexander, F. Willis, and N. M. Victor, Int. J. Process, 61, 289 (2001).   DOI   ScienceOn
14 W. Mischa, V. Marcel, V. M. Gert, and M. Marco, Ener. Pro., 4, 2043 (2011)   DOI   ScienceOn
15 S. Pascal, J. E. Lindqvist, A. Maria, and F. K. Paul, Cei. of Total Envir., 407, 5110 (2009).   DOI   ScienceOn
16 J. Schott, R. A. Berner, and E. L. Sjober, Geochim. Cosmochim. Acta, 45, 2123, (1981).   DOI   ScienceOn
17 J. Schott and R. A. Berner, Geochim. Cosmochim. Acta, 47, 2233 (1983).   DOI   ScienceOn
18 J. I. Drever, 35, D. Reidel, Dordrecht (1985).
19 H. Seyama, M. Soma, and A. Tanaka, Chem. Geol., 129, 209 (1996).   DOI   ScienceOn
20 T. H. Noh and T. G. Lee, Kor. J. of Met. & Mat., 45, 673 (2007).
21 R. C. L. Jonckbloed, J. of Geochem. Exp., 62, 337 (1998).   DOI   ScienceOn
22 J. C. Arroyo, J. D. Gillaspie, D. A. Neudorf, and E. M. Weenink, US Patent 6,379,636 B2 (2002).
23 J. M. Filio, K. Sugiyama, E. Kasai, and F. Saito, J. Chem. Eng. Japan., 26, 565 (1993).   DOI   ScienceOn
24 E. G. Daniel, G. B. Robert, and A. P. Catherine, Chem. Geol., 217, 257 (2005).   DOI   ScienceOn
25 H. K. Ja, Z. H. Jian, V. F. Romulus, M. R. Kevin, S. I. Eugene, W. Chonggmin, A. S. Jesse, H E. Mark, R. F. Andrew, and W. H. David, Int. J. Gree. Gas Con., 5, 1081 (2011).   DOI   ScienceOn
26 Korea Patent 10-2010-085599 (2010).