The Dissolution of Magnesium and Iron from Ferronickel Slag Depending on Aging Condition

Aging 조건에 따른 페로니켈 슬래그의 마그네슘 및 철 용출 특성

  • Kim, Eun-Young (Department of Chemical & Biomolecular Engineering, College of Engineering, Chonnam National University) ;
  • Choi, Sang-Won (Department of Chemical & Biomolecular Engineering, College of Engineering, Chonnam National University) ;
  • Kim, Viktor (Department of Chemical & Biomolecular Engineering, College of Engineering, Chonnam National University) ;
  • Li, Yujia (Department of Chemical & Biomolecular Engineering, College of Engineering, Chonnam National University) ;
  • Park, Ji-Hyun (Department of Chemical & Biomolecular Engineering, College of Engineering, Chonnam National University)
  • 김은영 (전남대학교 화공생명공학과) ;
  • 최상원 (전남대학교 화공생명공학과) ;
  • ;
  • ;
  • 박지현 (전남대학교 화공생명공학과)
  • Published : 2013.08.10

Abstract

Dissolution of ferronickel slag depending on aging condition was studied. Ferronickel slag typically contains 54.05% $SiO_2$, 34.33% MgO, and 5.51% $Fe_2O_3$. The main structure composite was similar to Enstatite [(Mg, $Fe^{2+}$ )$SiO_3$]. Ferronickel slag aging was made in 3 months under various experimental conditions, in water, bubbling water and wetting air. The most effective aging condition was the wetting air treatment. In this condition, the dissolving concentration of Mg and Fe was 80.0% and 75.1% respectively. The XRD and SEM data revealed that the wetting air condition also showed the biggest structural damage.

페로니켈 제조공정 슬래그를 대상으로 aging 조건에 따른 용출 특성을 연구하였다. 시료의 주성분은 54.05% $SiO_2$, 34.33% MgO, and 5.51% $Fe_2O_3$이었다. 주 결정구조는 Enstatite [(Mg, $Fe^{2+}$)$SiO_3$]이었다. 페로니켈 슬래그를 침수, 공기유입 침수, 습윤공기 조건에서 3개월간 aging 처리하였다. 습윤공기 aging 조건이 가장 효과적이었다. 습윤공기 aging 처리한 슬래그에서 마그네슘과 철의 침출율이 각각 80.0%, 75.1%로 가장 우수하였다. XRD, SEM 분석결과 습윤공기 aging 처리한 슬래그에서 결정성분의 파괴정도가 가장 크게 나타났다.

Keywords

References

  1. S. W. Choi, V. Kim, W. S. Chang, and E. Y. Kim, Mag. of the Kor. Conc. Ins., 19, 28 (2007).
  2. K. H. park and C. W. Nam, Trends in Met. & Met. Eng., 21, 4 (2008).
  3. E. Y. Kim, S. W. Choi, V. Kim, Y. Li, and J. H. Park, J. of Kor. Soc. of Waste Management, 28, 672 (2011).
  4. E. W. Choi, Sungkyunkwan University, Seoul, Korea (2010).
  5. R. A. Ber, Rev. Mineral., 31, 565 (1995).
  6. H. Sougata and V. W. John, Geochim. Cosmochim. Acta, 75, 7486 (2011). https://doi.org/10.1016/j.gca.2011.09.013
  7. R. A. Walther and J. V. Walther, Geochim. Cosmochim. Acta, 55, 943 (1991). https://doi.org/10.1016/0016-7037(91)90153-V
  8. C. M. K. Samuel and S. L. Klaus, Int. J. Gree. Gas Con., 5, 1073 (2011). https://doi.org/10.1016/j.ijggc.2011.01.006
  9. A. H. Park, R. Jadhav, and L. S. Fan, J. Chem. Eng., 81, 885 (2003).
  10. A. M. George, M. V. Mercedes, and G. A. Parnana, Fuel, 86, 273 (2007). https://doi.org/10.1016/j.fuel.2006.04.034
  11. K. K. Yoo, D. J. Kim, H. S. Chung, M. S. Kim, and J. C. Lee, J. of Min. & Ener. Res., 45, 257 (2008).
  12. Q. Odeta, K. Libor, K. K. Ravi, S. I. Eugene, W. A. Bruce, T. Jiri, and R. F. Andrew, Chem. Geol., 332, 124 (2012).
  13. V. K. Elena, M. K. Alexander, F. Willis, and N. M. Victor, Int. J. Process, 61, 289 (2001). https://doi.org/10.1016/S0301-7516(00)00038-7
  14. W. Mischa, V. Marcel, V. M. Gert, and M. Marco, Ener. Pro., 4, 2043 (2011) https://doi.org/10.1016/j.egypro.2011.02.086
  15. S. Pascal, J. E. Lindqvist, A. Maria, and F. K. Paul, Cei. of Total Envir., 407, 5110 (2009). https://doi.org/10.1016/j.scitotenv.2009.05.039
  16. J. Schott, R. A. Berner, and E. L. Sjober, Geochim. Cosmochim. Acta, 45, 2123, (1981). https://doi.org/10.1016/0016-7037(81)90065-X
  17. J. Schott and R. A. Berner, Geochim. Cosmochim. Acta, 47, 2233 (1983). https://doi.org/10.1016/0016-7037(83)90046-7
  18. J. I. Drever, 35, D. Reidel, Dordrecht (1985).
  19. H. Seyama, M. Soma, and A. Tanaka, Chem. Geol., 129, 209 (1996). https://doi.org/10.1016/0009-2541(95)00142-5
  20. T. H. Noh and T. G. Lee, Kor. J. of Met. & Mat., 45, 673 (2007).
  21. R. C. L. Jonckbloed, J. of Geochem. Exp., 62, 337 (1998). https://doi.org/10.1016/S0375-6742(98)00002-8
  22. J. C. Arroyo, J. D. Gillaspie, D. A. Neudorf, and E. M. Weenink, US Patent 6,379,636 B2 (2002).
  23. J. M. Filio, K. Sugiyama, E. Kasai, and F. Saito, J. Chem. Eng. Japan., 26, 565 (1993). https://doi.org/10.1252/jcej.26.565
  24. E. G. Daniel, G. B. Robert, and A. P. Catherine, Chem. Geol., 217, 257 (2005). https://doi.org/10.1016/j.chemgeo.2004.12.013
  25. H. K. Ja, Z. H. Jian, V. F. Romulus, M. R. Kevin, S. I. Eugene, W. Chonggmin, A. S. Jesse, H E. Mark, R. F. Andrew, and W. H. David, Int. J. Gree. Gas Con., 5, 1081 (2011). https://doi.org/10.1016/j.ijggc.2011.05.013
  26. Korea Patent 10-2010-085599 (2010).