• 제목/요약/키워드: $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$

검색결과 86건 처리시간 0.023초

$LiCoO_2/LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ 복합 정극의 특성 연구 (A Study on Electrochemical Characteristics of $LiCoO_2/LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ Mixed Cathode Materials)

  • 김현수;이영호;김성일;문성인;김우성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.318-319
    • /
    • 2005
  • 본 연구에서는 $LiCoO_2/LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ 혼합 정극활물질로 사용하여 전극을 제작하고 성능을 평가하였다. $LiCoO_2/LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$$LiCoO_2$의 혼합비에 따른 충방전 거동 및 임피던스 변화를 측정하였다. 각 조성에서의 초기용량은 160 ~ 170 mAh/g 정도였으며, $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$의 첨가 비율이 증가함에 따라 비용량이 증가하였으나 고율에서의 방전용량은 낮았다.

  • PDF

리튬2차전지에서 다른 전구체로부터 합성된 LiNi1/3Co1/3Mn1/3O2 양극 활물질의 특성 (Characterization of LiNi1/3Co1/3Mn1/3O2 Cathode Materials Prepared from Different Precursors in Lithium Rechargeable Batteries)

  • 김성근;홍성완;한경식;이홍기;심중표
    • 한국전기전자재료학회논문지
    • /
    • 제21권11호
    • /
    • pp.1029-1035
    • /
    • 2008
  • $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ cathode materials prepared from different precursors in lithium rechargeable batteries were characterized by various analytical methods. $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ powders were synthesized by using solid-state reaction method and their physical and chemical properties were analyzed by XRD, SEM, particle size analyzer and TCP-AES. These materials showed different crystallinity, particle size, surface morphology and chemical composition. Also, the charge/discharge cycling of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ electrodes was carried out under various cut-off voltages and it showed different behaviors. It was found that the electrochemical cyclability of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ was strongly related to its crystallinity.

리튬2차전지용 층상계 $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$의 표면개질에 따른 전지특성 변화 (Battery Performances of with Surface Treatment of Layered $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ Materials in Lithium Secondary Batteries)

  • 김현수;공명철;김기택;문성인;윤문수;김우성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.348-349
    • /
    • 2006
  • $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ cathode material was synthesized by a mixed hydroxide methode. The surface of the $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ was coated with a carbon by using a sol-gel method to improve further its electrochemical properties. Electrochemical studies were performed by assembling 2032 coin cells with lithium metal as an anode. OSC (differential scanning calorimetry) data showed that exothermic reactions of charged to 4.3V vs. Li was suppressed in the carbon-coated materials. The carbon-coated $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ showed the improved rate capability and thermal stability.

  • PDF

리튬이차전지 양극활물질용 LiMn2O4-LiNi1/3Mn1/3Co1/3O2의 전기화학적 특성 (Electrochemical Properties of LiMn2O4-LiNi1/3Mn1/3Co1/3O2 Cathode Materials in Lithium Secondary Batteries)

  • 공명철;;구할본
    • 한국전기전자재료학회논문지
    • /
    • 제29권5호
    • /
    • pp.298-302
    • /
    • 2016
  • In this work, $LiMn_2O_4$ and $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ cathode materials are mixed by some specific ratios to enhance the practical capacity, energy density and cycle performance of battery. At present, the most used cathode material in lithium ion batteries for EVs is spinel structure-type $LiMn_2O_4$. $LiMn_2O_4$ has advantages of high average voltage, excellent safety, environmental friendliness, and low cost. However, due to the low rechargeable capacity (120 mAh/g), it can not meet the requirement of high energy density for the EVs, resulting in limiting its development. The battery of $LiMn_2O_4-LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ (50:50 wt%) mixed cathode delivers a energy density of 483.5 mWh/g at a current rate of 1.0 C. The accumulated capacity from $1^{st}$ to 150th cycles was 18.1 Ah/g when the battery is cycled at a current rate of 1.0 C in voltage range of 3.2~4.3 V.

단순화한 연소법에 의해 합성한 LiMn1.92Co0.08O4와 LiNi0.7Co0.3O2 혼합물의 전기화학적 특성 (Electrochemical Properties of LiMn1.92Co0.08O4 and LiNi0.7Co0.3O2 Mixtures Prepared by a Simplified Combustion Method)

  • 송명엽;권익현;김훈욱
    • 한국세라믹학회지
    • /
    • 제41권10호
    • /
    • pp.735-741
    • /
    • 2004
  • 단순화한 연소법에 의해 합성한 $LiMn_{1.92}Co_{0.08}O_4$$LiNi_{0.7}Co_{0.3}O_2$의 혼합물의 전기화학적 성질을 알아보기 위하여, 30분 동안 milling하여 $LiMn_{1.92}Co_{0.08}O_4$-x wt$\%$ $LiNi_{0.7}Co_{0.3}O_2$ (x=9, 23, 33, 41, and 47) 조성의 혼합물을 제조하였다. x=9 조성의 전극이 비교적 큰 초기방전용량(109.9mAh/g at 0.1C)과 좋은 싸이클 성능을 가지고 있었다. 싸이클링에 따른 혼합물 전극의 방전용량 감소는 주로 $LiNi_{0.7}Co_{0.3}O_2$의 퇴화에 기인한다고 생각된다. $LiNi_{0.7}Co_{0.3}O_2$의 퇴화는 $LiMn_{1.92}Co_{0.08}O_4$로부터 용해된 Mn이 $LiNi_{0.7}Co_{0.3}O_2$ 입자를 둘러싸서(coating) 일어나는 것으로 판단된다.

리튬2차전지용 LiCoO2/LiNi1/3Mn1/3Co1/3O2계 복합정극의 전기화학적 특성 연구 (A Study on Electrochemical Characteristics of LiCoO2/LiNi1/3Mn1/3Co1/3O2 Mixed Cathode for Li Secondary Battery)

  • 김현수;김성일;엄승욱;김우성
    • 한국전기전자재료학회논문지
    • /
    • 제19권1호
    • /
    • pp.64-70
    • /
    • 2006
  • In this study, the $LiCoO_2/LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ mixed cathode electrodes were prepared and their electrochemical performances were measured in a high cut-off voltage. As the content of $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ increased in a mixed cathode, the reversible specific capacity and cycleability of the electrode enhanced, but the rate capability was deteriorated. On the contrary the rate capability of the cathode enhanced, but the reversible specific capacity and cycleability were deteriorated, increasing the content of $LiCoO_2$ in the mixed cathode. The cell of $LiCoO_2/LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ ($50:50 wt\%$) mixed cathode delivered a discharge capacity of ca. 168 mAh/g at a 0.2 C rate. The capacity of the cell decreased with the current rate and a useful capacity of ca. 152 mAh/g was obtained at a 2.0 C rate. However, the cell showed very stable cycleability: the discharge capacity of the cell after 20th charge/discharge cycling maintains ca. 163 mAh/g.

A Study on the Recovery of Li2CO3 from Cathode Active Material NCM(LiNiCoMnO2) of Spent Lithium Ion Batteries

  • Wang, Jei-Pil;Pyo, Jae-Jung;Ahn, Se-Ho;Choi, Dong-Hyeon;Lee, Byeong-Woo;Lee, Dong-Won
    • 한국분말재료학회지
    • /
    • 제25권4호
    • /
    • pp.296-301
    • /
    • 2018
  • In this study, an experiment is performed to recover the Li in $Li_2CO_3$ phase from the cathode active material NMC ($LiNiCoMnO_2$) in waste lithium ion batteries. Firstly, carbonation is performed to convert the LiNiO, LiCoO, and $Li_2MnO_3$ phases within the powder to $Li_2CO_3$ and NiO, CoO, and MnO. The carbonation for phase separation proceeds at a temperature range of $600^{\circ}C{\sim}800^{\circ}C$ in a $CO_2$ gas (300 cc/min) atmosphere. At $600{\sim}700^{\circ}C$, $Li_2CO_3$ and NiO, CoO, and MnO are not completely separated, while Li and other metallic compounds remain. At $800^{\circ}C$, we can confirm that LiNiO, LiCoO, and $Li_2MnO_3$ phases are separated into $Li_2CO_3$ and NiO, CoO, and MnO phases. After completing the phase separation, by using the solubility difference of $Li_2CO_3$ and NiO, CoO, and MnO, we set the ratio of solution (distilled water) to powder after carbonation as 30:1. Subsequently, water leaching is carried out. Then, the $Li_2CO_3$ within the solution melts and concentrates, while NiO, MnO, and CoO phases remain after filtering. Thus, $Li_2CO_3$ can be recovered.

전기방사법을 이용한 Li[Ni1/3Co1/3Mn1/3]O2 나노 섬유의 합성 및 전기화학적 특성 (Synthesis and Electrochemical Properties of Li[Ni1/3Co1/3Mn1/3]O2 Nanowire by the Electrospinning Method)

  • 강충수;손종태
    • 한국전기전자재료학회논문지
    • /
    • 제24권10호
    • /
    • pp.850-854
    • /
    • 2011
  • Nano-fibers of the $Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O_2$ electrode were synthesized from a metal oxide precursor using the electrospun method. The XRD patterns of all prepared powders showed a hexagonal ${\alpha}$ - $NaFeO_2$ structure (space group: R-3 m, 166). Scanning electron microscopy showed that all the synthesized samples were comprised of nanofibers with a size of 100~800 nm. Among the samples tested, the calcined $Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O_2$ nanowires in oxygen heating atmosphere showed a high charge and discharge capacity of 239.22 and 172.81 $mAhg^{-1}$ at the $1^{st}$ cycle, respectively. In addition, the charge transfer resistance was also improved significantly compared to the other samples.

Crystal Structure Changes of LiNi0.5Co0.2Mn0.3O2 Cathode Materials During the First Charge Investigated by in situ XRD

  • Lee, Sang-Woo;Jang, Dong-Hyuk;Yoon, Jeong-Bae;Cho, Yong-Hun;Lee, Yun-Sung;Kim, Do-Hoon;Kim, Woo-Seong;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • 제3권1호
    • /
    • pp.29-34
    • /
    • 2012
  • The structural changes of $Li_{1-x}Ni_{0.5}Co_{0.2}Mn_{0.3}O_2$ cathode material for lithium ion battery during the first charge was investigated in comparison with $Li_{1-x}Ni_{0.8}Co_{0.15}Al_{0.05}O_2$ using a synchrotron based in situ X-ray diffraction technique. The structural changes of these two cathode materials show similar trend during first charge: an expansion along the c-axis of the unit cell with contractions along the a- and b-axis during the early stage of charge and a major contraction along the c-axis with slight expansions along the a- and b-axis near the end of charge at high voltage limit. In $Li_{1-x}Ni_{0.5}Co_{0.2}Mn_{0.3}O_2$ cathode, however, the initial unit cell volume of H2 phase is bigger than that of H1 phase since the c-axis undergo large expansion while a- and b- axis shrink slightly. The change in the unit cell volume for $Li_{1-x}Ni_{0.5}Co_{0.2}Mn_{0.3}O_2$ during charge is smaller than that of $Li_{1-x}Ni_{0.8}Co_{0.15}Al_{0.05}O_2$. This smaller change in unit cell volume may give the $Li_{1-x}Ni_{0.5}Co_{0.2}Mn_{0.3}O_2$ cathode material a better structural reversibility for a long cycling life.

리륨이차전지용 $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ 양극활물질의 표면개질에 따른 전지특성 (Cell Performances of Surface-Treated $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ Material for Li Secondary Battery)

  • 김현수;공명철;김기택;문성인
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.294-295
    • /
    • 2007
  • $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ material was surface modified with Zr-phosphate. Scanning electron microscope, energy dispersive spectroscopy and electrochemical studies indicate that surface modification improve the rate capability. Electrochemical studies were performed by assembling 2032 coin cells with lithium metal as an anode.

  • PDF