• Title/Summary/Keyword: $L_1$ 적응 제어

Search Result 22, Processing Time 0.027 seconds

L1 Adaptive Controller Augmented with Feedback Linearization (피드백 선형화를 이용한 L1 적응제어기법 연구)

  • Kim, Nak-Wan;Yoo, Chang-Sun;Kang, Young-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.6
    • /
    • pp.558-564
    • /
    • 2008
  • This paper presents an approach to combine adaptive controller with feedback linearization, which extends the applicability of the adaptive controller to a wider class of systems. The adaptive controller guarantees the asymptotic tracking convergence and the transient performance of the tracking error. The feedback linearization transforms a nonlinear plant into a linear time invariant form. The asymptotic tracking convergence is shown by the use of Lyapunov stability analysis and Barbalat's lemma.

Trajectory Tracking Controller Design using L1 Adaptive Control for Multirotor UAVs (L1 적응 제어 기법을 이용한 멀티로터 무인 항공기의 궤적 추종 기법 설계)

  • Jung, Yeundeuk;Cho, Sungwook;Shim, Hyunchul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.10
    • /
    • pp.842-850
    • /
    • 2014
  • This paper presents a trajectory tracking controller for rotorcraft UAVs to improve the tracking performances in the presence of various uncertainties. The proposed tracking method consists of a velocity guidance law based on the relative distance and L1 adaptive augmentation loop for tracking the velocity commands. In the proposed structure, the desired velocity generated by the guidance law is the reference value of the adaptive controller for accurate path tracking. In the guidance law, the desired acceleration is generated based on the relative distance and its derivatives, and then the velocity command of the inner control loop is calculated by integrating the accelerations. $L_1$ augmentation loop supplements the linear controller to guarantee the flight performances such as a tracking accuracy in the presence of the uncertainties. The proposed controller was validated in actual flight tests to successfully demonstrate its capability using a quadrotor UAV.

Design and Performance Verification of L1 Adaptive Flight Control Law Considering the Change of Center of Gravity for Unmanned Tailless Aircraft (무인 무미익 항공기의 무게중심 변화를 고려한 L1 적응제어 비행제어 법칙 설계 및 성능 검증)

  • Ko, Dong-hyeon;Kang, Ji-soo;Choi, Keeyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.2
    • /
    • pp.114-121
    • /
    • 2019
  • Tailless aircraft have advantages of low visibility compared to conventional aircraft, but drawback of poor stability as well which makes designing controller difficult. The controller design is more difficult, especially when the center of gravity moves due to store release or fuel consumption during flight. In this paper, an L1 adaptive controller is proposed as a way to overcome these problems. The reliability and performance of the controllers were verified by non-linear simulations. RPV Flying Quality Design criteria were used for design criteria. Using the simulation, it is shown that the adaptive controller maintains stability of the unmanned aircraft for sudden large change in the inertial properties. It is also shown that the calculation burden can be reduced when it is used with the gain scheduling method.

Control of Wastewater Treatment Removing Phosphate Based on ASM No. 2 Simplified Model and Investigation of Luxury Uptake Limitation (ASM No. 2 간략화 모델에 기초한 인산염의 제어 및 인섭취 제한현상에 대한 고찰)

  • Kim, Shin-Geol;Choi, In-Su;Koo, Ja-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.2
    • /
    • pp.181-189
    • /
    • 2008
  • Phosphate is the limiting factor leading to the eutrophication in nature and has been usually removed by the luxury uptake of PAOs(Phosphate accumulating organisms). The purpose of this study was the control of wastewater treatment removing phosphorus. The control of wastewater treatment process was performed by optimal and adaptive control. They were performed as followings. Firstly the inflow phosphate concentration was measured and the optimal aeration time was calculated by simplified ASM No. 2 for the phosphate to be 1.0 mg/L in effluent. It was optimal control. But when the phosphate concentration in effluent was not 1.0 mg/L, adaptive control was necessary to coincide the objective of control with real value. Then it was performed as the objective phosphate concentration in effluent was changed according to calculation of errors and it was adaptive control. The wastewater treatment process had been controlled by them for about one month. The range of phosphate concentration in effluent 0.2$\sim$3.2 mg/L and the average of it was 1.0 mg/L. The limitation of luxury uptake occurred two times while wastewater treatment process was running. After the analysis of laboratory tests, we knew the reasons were the shortage of ammonia nitrogen and the excessive aeration.

Adaptive Control of D.C. Motor Speed Using W.L.S. Algorithm (W.L.S. 알고리즘을 사용한 직유전동기 속도의 적응제어)

  • Park, Jun;Kwon, Key-Ho;Choi, Kye-Keun
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.20 no.5
    • /
    • pp.31-36
    • /
    • 1983
  • The indirect M.R.A.C. method using the W.L.S. algorithm is applied to the speed control of a D.C. motor on the assumption that the motor is the 1-st order, completely controllable and observable, non-minimum phase plant. By the help of M6809 microprocessor system the experiments are performed with respect to the sinusoidal and square reference input. The results show that the speed of a D.C. motor is well controlled by the indirect M.R.A.C. method using W.L.S, algorithm, and that the W.L.S. algorithm is quite suitable to the time-varying plant.

  • PDF

Tiltrotor Attitude Control Using L1 Adaptive Controller (L1 적응제어기법을 이용한 틸트로터기의 자세제어)

  • Kim, Nak-Wan;Kim, Byoung-Soo;Yoo, Chang-Sun;Kang, Young-Sin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1226-1231
    • /
    • 2008
  • A design of attitude controller for a tiltrotor is presented augmenting L1 adaptive control, neural networks, and feedback linearization. The neural networks compensate for the modeling error caused by the lack of knowledge of tiltrotor dynamics while the L1 adaptive control allows high adaptation gains in adaptation laws thereby, satisfying tracking performance requirement. The efficacy of this control methodology is illustrated in high-fidelity nonlinear simulation of a tiltrotor by flying the tiltrotor in different flight modes from where the L1 adaptive controller with neural networks is originally designed for.

Design of a Adaptive Code Tracking Loop for GPS L1/L2C/L5 Receivers (GPS L1/L2C/L5 수신기를 위한 적응 코드추적루프 설계)

  • Choi, Heon-Ho;Lim, Deok-Won;Lee, Sang-Uk;Kim, Ji-Hoon;Lee, Sang-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.283-288
    • /
    • 2011
  • In this paper, an adaptive signal tracking loop for a GPS L1/L2C/L5 receiver is designed. The design parameters is adjusted according to the receiver's operating conditions such as the signal strength and the receiver dynamics by using the different characteristics of GPS L1, L2C and L5 signal. Simulation results show that the tracking accuracy of the proposed signal tracking loop is better than those of L1, L2C and L5 only signal tracking loop.

Position and Attitude Control System Design of Magnetic Suspension and Balance System for Wind Tunnel Test using Iterative Feedback Tuning and L1 Adaptive Control Scheme (IFT와 L1 적응제어기법을 이용한 풍동실험용 자기부상 비접촉식 밸런스의 제어시스템 설계)

  • Lee, Dong-Kyu
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.5
    • /
    • pp.28-35
    • /
    • 2017
  • Magnetic Suspension and Balance System (MSBS) demonstrates the capacity to levitate an experimental model absent any mechanical contact using magnetic forces and moments. It allows precise control of position and attitude of the model, and measures external forces and moments acting on the model. For the purpose of acquisition of reliable experimental results under stable and safe conditions, the performance and robustness of the position and attitude control system of MSBS needs to be improved. To this end, Iterative Feedback Tuning (IFT) and L1 adaptive output feedback algorithm were employed to automatically increase command following performance and to ensure robust operation of MSBS with failure of electric power supply. The applicability was validated using computational simulation.

Adaptive Variable Weights Tuning in an Integrated Chassis Control for Lateral Stability Enhancement (횡방향 안정성 향상을 위한 통합 섀시 제어의 적응 가변 가중치 조절)

  • Yim, Seongjin;Kim, Wooil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.103-111
    • /
    • 2016
  • This paper presents an adaptive variable weights tuning system for an integrated chassis control with electronic stability control (ESC) and active front steering (AFS) for lateral stability enhancement. After calculating the control yaw moment needed to stabilize a vehicle with a controller design method, it is distributed into the tire forces generated by ESC and AFS using weighted pseudo-inverse-based control allocation (WPCA). On a low friction road, lateral stability can deteriorate due to high vehicle speed. To cope with the problem, adaptive tuning rules on variable weights of the WPCA are proposed. To check the effectiveness of the proposed method, a simulation was performed on the vehicle simulation package, CarSim.

A Simulation Study of Two-stage Fed-batch Culture for Optimization and Control of PHB Production (PHB 생산의 최적화 및 제어를 위한 이단유가식 배양의 전산모사)

  • 이재호;이용우;유영제
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.6
    • /
    • pp.668-676
    • /
    • 1992
  • For the purpose of optimizing poly-l3-hydroxybutyrate (PHB) production from Alcaligenes eutrophus, two-stage fed-batch culture was adopted. In this system, specifk growth rate was maximized during the first stage whereas specific production rate was maximized during the second stage. The optimal concentrations of glucose and ammonium chloride were 16.6 and 0.54 g/I in the growth stage and 20.0 and 0.07 g/l in the production stage, respectively. Proportional feedback control considering time lag was suggested for PHB production process and a simulator was developed for real-time control purpose.

  • PDF