DOI QR코드

DOI QR Code

Trajectory Tracking Controller Design using L1 Adaptive Control for Multirotor UAVs

L1 적응 제어 기법을 이용한 멀티로터 무인 항공기의 궤적 추종 기법 설계

  • Received : 2012.03.27
  • Accepted : 2014.08.19
  • Published : 2014.10.01

Abstract

This paper presents a trajectory tracking controller for rotorcraft UAVs to improve the tracking performances in the presence of various uncertainties. The proposed tracking method consists of a velocity guidance law based on the relative distance and L1 adaptive augmentation loop for tracking the velocity commands. In the proposed structure, the desired velocity generated by the guidance law is the reference value of the adaptive controller for accurate path tracking. In the guidance law, the desired acceleration is generated based on the relative distance and its derivatives, and then the velocity command of the inner control loop is calculated by integrating the accelerations. $L_1$ augmentation loop supplements the linear controller to guarantee the flight performances such as a tracking accuracy in the presence of the uncertainties. The proposed controller was validated in actual flight tests to successfully demonstrate its capability using a quadrotor UAV.

본 논문은 예측하지 못한 외부 환경 요소 변화로 인해 저하되는 비행 성능을 $L_1$ 적응 제어 기법으로 보상하는 궤적 추종 기법을 제안하였다. 제안된 궤적 추종 기법은 상대 거리를 이용하여 속도 명령을 생성하는 유도 법칙과 속도 명령을 추종하는 적응 제어 루프로 구성되어 있다. 경로 추종 성능을 향상시키기 위하여, 유도 법칙에서 생성한 속도 명령이 적응 제어기의 기준 입력이 되도록 설계하였다. 유도 법칙에서는 목표 궤적과 상대 거리와 그 변화량에 따른 가속도 명령이 생성되며, 이를 적분하여 속도 명령을 생성한다. $L_1$ 적응 제어 루프는 불확실성이 존재하는 환경에서 정밀한 경로 추종 성능을 보장한다. 제안된 경로 추종 시스템은 쿼드로터 항공기를 사용하여 수직 이착륙 및 이동 표적 추종과 같은 비행 실험으로 검증하였다.

Keywords

References

  1. Samir Bouabdallah, Pierpaolo Murrieri and Roland Siegwart, "Towards Autonomous Indoor Micro VTOL", Autonomous Robots, Vol. 18, No. 2, Mar. 2005, pp. 171-183 https://doi.org/10.1007/s10514-005-0724-z
  2. J. Hauser, S. Sastry, and G. Meyer, "Nonlinear control design for slightly non-minimum phase systems: Application to v/stol aircraft," Automatica, Vol. 28, 1992, pp. 665-679 https://doi.org/10.1016/0005-1098(92)90029-F
  3. D.Lee, H.J. Kim, and S.Sastry, "Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter," International Journal of Control, Automation, and Systems, vol. 7, 2009, pp. 419-428. https://doi.org/10.1007/s12555-009-0311-8
  4. E. Frazzoli, M. Dahleh, and E. Feron, "Trajectory tracking control design for autonomous helicopters using a backstepping algorithm," in Proceedings of the American Control Conference, Chicago, USA, 2000, pp.4102-4107
  5. A. Kopeikinm, S. Ponda, L.Johnson, and J. How, "Multi-UAV Network Control through Dynamic Task Allocation: Ensuring Data-Rate and Bit-Error-Rate Support" The 3rd Internatinal Workshop on Wireless Networking & Control for Unmanned Autonomous Vehicles: Architectures, Protocols and Applications, Anaheim, USA, Dec. 2012, pp.1579-1584
  6. C. Cao, and N. Hovakimyan, "Design and Analysis of a Novel $L_1$ Adaptive Control Architecture, Part I: Control Signal and Asymptotic Stability." American Control Conference, Minneapolis, USA, 2006, pp. 3397-3402
  7. V. Patel, C. Cao, N. Hovakimyan., Wise, K., and Lavretskym, E., "$L_1$ Adaptive Controller for Tailless Unstable Aircraft in the Presence of Unknown Actuator Failures," International Journal of Control, Vol.82, No.4, Apr. 2009, pp. 705-720 https://doi.org/10.1080/00207170802225955
  8. I. Kaminer, A. Pascoal, E. Xargay, C. Cao, N. Hovakimyan, and Dobrokhodov, V., "Path Following for Unmanned Aerial Vehicles Using L1 Adaptive Augmentation of Commercial autopilots," Journal of Guidance, Control and Dynamics, Vol. 33, No. 2, 2010, pp.550-564 https://doi.org/10.2514/1.42056
  9. Gary Bradski and Kaehler, "Learning OpenCV", O'REILLY, Sep. 2008, pp. 370-403